
Term-Image
Release 0.6.1

Toluwaleke Ogundipe

Apr 30, 2023

CONTENTS

1 Contents 3
1.1 Getting Started . 3
1.2 User Guide . 14
1.3 API Reference . 20
1.4 Planned Features . 54
1.5 Known Issues . 55
1.6 FAQs . 55
1.7 Glossary . 56

2 Indices and Tables 61

Python Module Index 63

Index 65

i

ii

Term-Image, Release 0.6.1

Attention: Under Construction - There might be incompatible changes between minor versions of version zero!

If you want to use this library in a project while it’s still on version zero, ensure you pin the dependency to a specific
minor version e.g >=0.4,<0.5.

On this note, you probably also want to switch to the specific documentation for the version you’re using (somewhere
at the lower left corner of this page).

CONTENTS 1

https://semver.org/spec/v2.0.0.html#spec-item-4

Term-Image, Release 0.6.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Getting Started

1.1.1 Installation

Requirements

• Operating System: Unix / Linux / MacOS X / Windows (limited support, see the FAQs)

• Python >= 3.7

• A terminal emulator with any of the following:

– support for the Kitty graphics protocol.

– support for the iTerm2 inline image protocol.

– full Unicode support and ANSI 24-bit color support

Plans to support a wider variety of terminal emulators are in motion (see Planned Features).

Steps

The latest stable version can be installed from PyPI with:

pip install term-image

The development version can be installed with:

pip install git+https://github.com/AnonymouX47/term-image.git

Supported Terminal Emulators

Some terminals emulators that have been tested to meet the requirements for at least one render style include:

• libvte-based terminal emulators such as:

– Gnome Terminal

– Terminator

– Tilix

• Kitty

3

https://www.python.org/
https://sw.kovidgoyal.net/kitty/graphics-protocol/
https://iterm2.com/documentation-images.html
https://pypi.org/project/term-image

Term-Image, Release 0.6.1

• Konsole

• iTerm2

• WezTerm

• Alacritty

• Windows Terminal

• MinTTY (on Windows)

• Termux (on Android)

Note: If you’ve tested term-image on any other terminal emulator that meets all requirements, please mention the
name in a new thread under this discussion.

Also, if you’re having an issue with terminal support, you may report or check information about it in the discussion
linked above.

Note: Some terminal emulators support 24-bit color escape sequences but have a 256-color pallete. This will limit
color reproduction.

1.1.2 Tutorial

This is a basic introduction to using the library. Please refer to the API Reference for detailed description of the features
and functionality provided by the library.

For this tutorial we’ll be using the image below:

4 Chapter 1. Contents

https://github.com/AnonymouX47/term-image/discussions/4

Term-Image, Release 0.6.1

The image has a resolution of 288x288 pixels.

Note: All the samples in this tutorial occured in a terminal window of 255 columns by 70 lines.

Creating an Instance

Image instances can be created using the convinience functions AutoImage(), from_file() and from_url(), which
automatically detect the best style supported by the terminal emulator.

Instances can also be created using the Image Classes directly via their respective constructors or from_file() and
from_url() methods.

1. Initialize with a file path:

from term_image.image import from_file

image = from_file("path/to/python.png")

2. Initialize with a URL:

from term_image.image import from_url

image = from_url("https://raw.githubusercontent.com/AnonymouX47/term-image/main/
→˓docs/source/resources/tutorial/python.png")

3. Initialize with a PIL (Pillow) image instance:

from PIL import Image
from term_image.image import AutoImage

img = Image.open("path/to/python.png")
image = AutoImage(img)

Rendering an Image

Rendering an image is the process of converting it (per-frame for animated images) into text (a string) which reproduces
a representation or approximation of the image when written to the terminal.

Hint: To display the rendered image in the following steps, pass the string as an argument to print().

There are two ways to render an image:

1.1. Getting Started 5

https://docs.python.org/3/library/functions.html#print

Term-Image, Release 0.6.1

Unformatted Rendering

This is done using:

str(image)

The image is rendered without padding/alignment and with transparency enabled.

The output (using print()) should look like:

Formatted Rendering

Note: To see the effect of alignment in the steps below, please scale the image down using:

image.scale = 0.75

This simply sets the x-axis and y-axis scale of the image to 0.75. We’ll see more about this later.

Below are examples of formatted rendering:

format(image, "|200.^70#ffffff")

Renders the image with:

• center horizontal alignment

• a padding width of 200 columns

6 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#print

Term-Image, Release 0.6.1

• top vertical alignment

• a padding height of 70 lines

• white (#ffffff) background underlay

Note: You might have to reduce the padding width (200) and/or height (70) to something that’ll fit into your terminal
window, or increase the size of the terminlal window

The output (using print()) should look like:

f"{image:>._#.5}"

Renders the image with:

• right horizontal alignment

• automatic padding width (the current terminal width minus horizontal allowance)

• bottom vertical alignment

• automatic padding height (the current terminal height minus vertical allowance)

• transparent background with 0.5 alpha threshold

The output (using print()) should look like:

1.1. Getting Started 7

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print

Term-Image, Release 0.6.1

"{:1.1#}".format(image)

Renders the image with:

• center horizontal alignment (default)

• no horizontal padding, since 1 is less than or equal to the image width

• middle vertical alignment (default)

• no vertical padding, since 1 is less than or equal to the image height

• transparency is disabled (alpha channel is ignored)

The output (using print()) should look like:

8 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#print

Term-Image, Release 0.6.1

See also:

Render Formatting and Render Format Specification

Drawing/Displaying an Image

There are two basic ways to draw an image to the terminal screen:

1. Using the draw() method:

image.draw()

NOTE: draw() has various parameters for Render Formatting.

2. Using print() with an image render output (i.e printing the rendered string):

print(image) # Uses str()
OR
print(f"{image:>200.^70#ffffff}") # Uses format()

Note:

• For animated images, only the former animates the output, the latter only draws the current frame (see seek()
and tell()).

• Also, the former performs size validation to see if the image will fit into the terminal, while the latter doesn’t.

Important: All the examples above use dynamic, automatic sizing and default scale.

1.1. Getting Started 9

https://docs.python.org/3/library/functions.html#print

Term-Image, Release 0.6.1

Image Size

The size of an image is the unscaled dimension with which an image is rendered.
The image size can be retrieved via the size, width and height properties.

The size of an image can be in either of two states:

1. Fixed

In this state,

• the size property evaluates to a 2-tuple of integers, while the width and height properties evaluate to
integers,

• the image is rendered with the set size.

2. Dynamic

In this state,

• the size, width and height properties evaluate to a Size enum member,

• the size with which the image is rendered is automatically calculated (based on the current terminal size or
the image’s original size) whenever the image is to be rendered.

The size of an image can be set at instantiation by passing an integer or a Size enum member to either the width or the
height keyword-only parameter. For whichever axis a dimension is given, the dimension on the other axis is calculated
proportionally.

Note:

1. The arguments can only be given by keyword.

2. If neither is given, the FIT dynamic size applies.

3. All methods of instantiation accept these arguments.

For example:

>>> from term_image.image import Size, from_file
>>> image = from_file("python.png") # Dynamic FIT
>>> image.size is Size.FIT
True
>>> image = from_file("python.png", width=60) # Fixed
>>> image.size
(60, 30)
>>> image.height
30
>>> image = from_file("python.png", height=56) # Fixed
>>> image.size
(112, 56)
>>> image.width
112
>>> image = from_file("python.png", height=Size.FIT) # Fixed FIT
>>> image.size
(136, 68)
>>> image = from_file("python.png", width=Size.FIT_TO_WIDTH) # Fixed FIT_TO_WIDTH

(continues on next page)

10 Chapter 1. Contents

Term-Image, Release 0.6.1

(continued from previous page)

>>> image.size
(255, 128)
>>> image = from_file("python.png", height=Size.ORIGINAL) # Fixed ORIGINAL
>>> image.size
(288, 144)

No size validation is performed i.e the resulting size might not fit into the terminal window

>>> image = from_file("python.png", height=68) # Will fit in, OK
>>> image.size
(136, 68)
>>> image = from_file("python.png", height=500) # Will not fit in, also OK
>>> image.size
(1000, 500)

An exception is raised when both width and height are given.

>>> image = from_file("python.png", width=100, height=100)
Traceback (most recent call last):
.
.
.

ValueError: Cannot specify both width and height

The width and height properties can be used to set the size of an image after instantiation, resulting in fixed size.

>>> image = from_file("python.png")
>>> image.width = 56
>>> image.size
(56, 28)
>>> image.height
28
>>> image.height = 68
>>> image.size
(136, 68)
>>> image.width
136
>>> # Even though the terminal can't contain the resulting height, the size is still set
>>> image.width = 200
>>> image.size
(200, 100)
>>> image.width = Size.FIT
>>> image.size
(136, 69)
>>> image.height = Size.FIT_TO_WIDTH
>>> image.size
(255, 128)
>>> image.height = Size.ORIGINAL
>>> image.size
(288, 144)

The size property can only be set to a Size enum member, resulting in dynamic size.

1.1. Getting Started 11

Term-Image, Release 0.6.1

>>> image = from_file("python.png")
>>> image.size = Size.FIT
>>> image.size is image.width is image.height is Size.FIT
True
>>> image.size = Size.FIT_TO_WIDTH
>>> image.size is image.width is image.height is Size.FIT_TO_WIDTH
True
>>> image.size = Size.ORIGINAL
>>> image.size is image.width is image.height is Size.ORIGINAL
True

Important:

1. The currently set cell ratio is also taken into consideration when calculating sizes for images of Text-based Render
Styles.

2. There is a default 2-line vertical allowance, to allow for shell prompts or the likes.

Tip: See set_size() for extended sizing control.

Image scale

The scale of an image is the ratio of its size with which it will actually be rendered.
A valid scale value is a float in the range 0.0 < x <= 1.0 i.e greater than zero and less than or equal to one.

The image scale can be retrieved via the properties scale, scale_x and scale_y.

The scale can be set at instantiation by passing a value to the scale keyword-only paramter.

>>> image = from_file("python.png", scale=(0.75, 0.6))
>>> image.scale
>>> (0.75, 0.6)

The drawn image (using image.draw()) should look like:

12 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float

Term-Image, Release 0.6.1

If the scale argument is ommited, the default scale (1.0, 1.0) is used.

>>> image = from_file("python.png")
>>> image.scale
>>> (1.0, 1.0)

The drawn image (using image.draw()) should look like:

1.1. Getting Started 13

Term-Image, Release 0.6.1

The properties scale, scale_x and scale_y are used to set the scale of an image after instantiation.

scale accepts a tuple of two scale values or a single scale value.
scale_x and scale_y each accept a single scale value.

>>> image = from_file("python.png")
>>> image.scale = (.3, .56756)
>>> image.scale
(0.3, 0.56756)
>>> image.scale = .5
>>> image.scale
(0.5, 0.5)
>>> image.scale_x = .75
>>> image.scale
(0.75, 0.5)
>>> image.scale_y = 1.
>>> image.scale
(0.75, 1.0)

Finally, to explore more of the library’s features and functionality, check out the User Guide and the API Reference.

1.2 User Guide

1.2.1 Concepts

Render Styles

See render style.

All render style classes are designed to share a common interface (with some having extensions), making the usage of
one class directly compatibile with another, except when using style-specific features.

Hence, the covenience functions AutoImage, from_file and from_url provide a means of render-style-agnostic
usage of the library. These functions automatically detect the best render style supported by the active terminal.

There are two main categories of render styles:

14 Chapter 1. Contents

Term-Image, Release 0.6.1

Text-based Render Styles

Represent images using ASCII or Unicode symbols, and in some cases, with escape sequences to reproduce color.

Render style classes in this category are subclasses of TextImage. These include:

• BlockImage

Graphics-based Render Styles

Represent images with actual pixels, using terminal graphics protocols.

Render style classes in this category are subclasses of GraphicsImage. These include:

• KittyImage

• ITerm2Image

Render Methods

A render style may implement multiple render methods. See the Render Methods section in the description of a render
style class (that implements multiple render methods), for the description of its render methods.

Auto Cell Ratio

Note: This concerns Text-based Render Styles only.

The is a feature which when supported, can be used to determine the cell ratio directly from the terminal emulator
itself. With this feature, it is possible to always produce images of text-based render styles with correct aspect ratio.

When using either mode of AutoCellRatio, it’s important to note that some terminal emulators (most non-graphics-
capable ones) might have queried. See Terminal Queries.

If the program will never expect any useful input, particularly while an image’s size is being set/calculated, then
using DYNAMIC mode is OK. For an image with dynamic size, this includes when it’s being rendered and when its
rendered_size, rendered_width or rendered_height property is invoked.

Otherwise i.e if the program will be expecting input, use FIXED mode and use read_tty_all() to read all currently
unread input just before calling set_cell_ratio().

The Active Terminal

See active terminal.

The following streams/files are checked in the following order (along with the rationale behind the ordering):

• STDOUT: Since it’s where images will most likely be drawn.

• STDIN: If output is redirected to a file or pipe and the input is a terminal, then using it as the active terminal
should give the expected result i.e the same as when output is not redirected.

• STDERR: If both output and input are redirected, it’s usually unlikely for errors to be.

• /dev/tty: Finally, if all else fail, fall back to the process’ controlling terminal, if any.

1.2. User Guide 15

Term-Image, Release 0.6.1

The first one that is ascertained to be a terminal device is used for all Terminal Queries and to retrieve the terminal (and
window) size on some terminal emulators.

Note: If none of the streams/files is a TTY device, then a TermImageWarning is issued and dependent functionality
is disabled.

Terminal Queries

Some features of this library require the aquisition of certain information from the active terminal. A single iteration
of this aquisition procedure is called a query.

A query involves three major steps:

1. Clear all unread input from the terminal

2. Write to the terminal

3. Read from the terminal

For this procedure to be successful, it must not be interrupted.

About #1
If the program is expecting input, use read_tty_all() to read all currently unread input (without blocking)
just before any operation involving a query.

About #2 and #3
After sending a request to the terminal, its response is awaited. The default wait time is
DEFAULT_QUERY_TIMEOUT but can be changed using set_query_timeout(). If the terminal emulator
responds after the set timeout, this can result in the application program recieving what would seem to be
garbage or ghost input (see this FAQ).

If the program includes any other function that could write to the terminal OR especially, read from the terminal
or modify it’s attributes, while a query is in progress (as a result of asynchronous execution e.g multithreading
or multiprocessing), decorate it with lock_tty() to ensure it doesn’t interfere.

For example, an image viewer based on this project uses urwid which reads from the terminal using urwid.
raw_display.Screen.get_available_raw_input(). To prevent this method from interfering with termi-
nal queries, it uses UrwidImageScreen which overrides and wraps the method like:

class UrwidImageScreen(Screen):
@lock_tty
def get_available_raw_input(self):
return super().get_available_raw_input()

Also, if the active terminal is not the controlling terminal of the process using this library (e.g output is redirected
to another TTY device), ensure no process that can interfere with a query (e.g a shell or REPL) is currently
running in the active terminal. For instance, such a process can be temporarily put to sleep.

16 Chapter 1. Contents

https://github.com/AnonymouX47/termvisage
https://urwid.org
https://urwid.org/reference/display_modules.html#urwid.raw_display.Screen.get_available_raw_input
https://urwid.org/reference/display_modules.html#urwid.raw_display.Screen.get_available_raw_input

Term-Image, Release 0.6.1

Features that require terminal queries

In parentheses are the outcomes when the terminal doesn’t support queries or when queries are disabled.

• Auto Cell Ratio (determined to be unsupported)

• Support checks for Graphics-based Render Styles (determined to be unsupported)

• Auto background color (black is used)

• Alpha blend for pixels above the alpha threshold in transparent renders with Text-based Render Styles (black is
used)

• Workaround for ANSI background colors in text-based renders on the Kitty terminal (the workaround is disabled)

Note: This list might not always be complete. In case you notice

• any difference with any unlisted feature when terminal queries are enabled versus when disabled, or

• a behaviour different from the one specified for the listed features, when terminal queries are disabled,

please open an issue here.

1.2.2 Render Formatting

Render formatting is simply the modification of a primary render output. This is provided via:

• Python’s string formatting protocol by using format(), str.format() or formatted string literals with the
Render Format Specification

• Parameters of draw()

The following constitute render formatting:

Padding

This adds whitespace around a primary render output. The amount of whitespace added is determined by two values
(with respect to the rendered size):

• padding width, determines horizontal padding

– uses the width field of the Render Format Specification

– uses the pad_width parameter of draw()

• padding height, determines vertical padding

– uses the height field of the Render Format Specification

– uses the pad_height parameter of draw()

If the padding width or height is less than or equal to the width or height of the primary render output, then the padding
has no effect on the corresponding axis.

1.2. User Guide 17

https://github.com/AnonymouX47/term-image/issues
https://docs.python.org/3/library/functions.html#format
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

Term-Image, Release 0.6.1

Alignment

This determines the position of a primary render output within it’s Padding. The position is determined by two values:

• horizontal alignment, determines the horizontal position

– uses the h_align field of the Render Format Specification

– uses the h_align parameter of draw()

• vertical alignment, determines the vertical position

– uses the v_align field of the Render Format Specification

– uses the v_align parameter of draw()

Transparency

This determines how transparent pixels are rendered. Transparent pixels can be rendered in one of the following ways:

• Transparency disabled

Alpha channel is ignored.

– uses the # field of the Render Format Specification, without threshold or bgcolor

– uses the alpha parameter of draw(), set to None

• Transparency enabled with an alpha threshold

For Text-based Render Styles, any pixel with an alpha value above the given threshold is taken as opaque. For
Graphics-based Render Styles, the alpha value of each pixel is used as-is.

– uses the threshold field of the Render Format Specification

– uses the alpha parameter of draw(), set to a float value

• Transparent pixels overlaid on a color

May be specified to be a specific color or the default background color of the terminal emulator (if it can’t be
determined, black is used).

– uses the bgcolor field of the Render Format Specification

– uses the alpha parameter of draw(), set to a string value

Render Format Specification

[<h_align>] [<width>] [. [<v_align>] [<height>]] [# [<threshold> |
→˓<bgcolor>]] [+ <style>]

Note:

• spaces are only for clarity and not included in the syntax

• <...> is a placeholder for a single field

• | implies mutual exclusivity

• fields within [] are optional

• fields within { } are required, though subject to any enclosing []

18 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float

Term-Image, Release 0.6.1

• if the . is present, then at least one of v_align and height must be present

• h_align→ horizontal alignment

– <→ left

– |→ center

– >→ right

– default → center

• width→ padding width

– positive integer

– default: terminal width minus horizontal allowance

– if less than or equal to the rendered width, it has no effect

• v_align→ vertical alignment

– ^→ top

– -→ middle

– _→ bottom

– default → middle

• height→ padding height

– positive integer

– default: terminal height minus vertical allowance

– if less than or equal to the rendered height, it has no effect

• #→ transparency setting

– default: transparency is enabled with the default alpha threshold

– threshold→ alpha threshold

∗ a float value in the range 0.0 <= threshold < 1.0 (but starting with the . (decimal point))

∗ applies to only Text-based Render Styles

∗ e.g .0, .325043, .999

– bgcolor→ background underlay color

∗ #→ the terminal emulator’s default background color (or black, if undetermined), OR

∗ a hex color e.g ffffff, 7faa52

– if neither threshold nor bgcolor is present, but # is present, transparency is disabled i.e alpha channel
is ignored

• style→ style-specific format specifier

See each render style in Image Classes for its own specification, if it defines.

style can be broken down into [<parent>] [<current>], where current is the spec defined by a
render style and parent is the spec defined by a parent of that render style. parent can in turn be recursively
broken down as such.

1.2. User Guide 19

Term-Image, Release 0.6.1

See also:

Formatted rendering tutorial.

1.3 API Reference

Attention: Under Construction - There might be incompatible interface changes between minor versions of
version zero!

If you want to use the library in a project while it’s still on version zero, ensure you pin the dependency to a specific
minor version e.g >=0.4,<0.5.

On this note, you probably also want to switch to the specific documentation for the version you’re using (somewhere
at the lower left corner of this page).

Attention: Any module or definition not documented here should be considered part of the private interface and
can be changed or removed at any time without notice.

1.3.1 Top-Level Definitions

Constants

term_image.DEFAULT_QUERY_TIMEOUT: float = 0.1

Default timeout for Terminal Queries

See also: set_query_timeout()

Enumerations

class term_image.AutoCellRatio(value)
Bases: enum.Enum

Values for setting Auto Cell Ratio.

is_supported: bool | None = None

Auto cell ratio support status. Can be

• None -> support status not yet determined

• True -> supported

• False -> not supported

Can be explicitly set when using auto cell ratio but want to avoid the support check in a situation where
the support status is foreknown. Can help to avoid being wrongly detected as unsupported on a queried
terminal that doesn’t respond on time.

For instance, when using multiprocessing, if the support status has been determined in the main process,
this value can simply be passed on to and set within the child processes.

FIXED

20 Chapter 1. Contents

https://semver.org/spec/v2.0.0.html#spec-item-4
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Term-Image, Release 0.6.1

DYNAMIC

See set_cell_ratio().

Functions

disable_queries Disables Terminal Queries.
disable_win_size_swap Disables a workaround for terminal emulators that

wrongly report window dimensions swapped.
enable_queries Re-Enables Terminal Queries.
enable_win_size_swap Enables a workaround for terminal emulators that

wrongly report window dimensions swapped.
get_cell_ratio Returns the global cell ratio.
set_cell_ratio Sets the global cell ratio.
set_query_timeout Sets the timeout for Terminal Queries.

term_image.disable_queries()

Disables Terminal Queries.

To re-enable queries, call enable_queries().

Note: This affects all dependent features.

term_image.disable_win_size_swap()

Disables a workaround for terminal emulators that wrongly report window dimensions swapped.

This workaround is disabled by default. While disabled, the window dimensions reported by the active terminal
are used as-is.

Note: This affects Auto Cell Ratio computation and size computations for Graphics-based Render Styles.

term_image.enable_queries()

Re-Enables Terminal Queries.

Queries are enabled by default. To disable, call disable_queries().

Note: This affects all dependent features.

term_image.enable_win_size_swap()

Enables a workaround for terminal emulators that wrongly report window dimensions swapped.

While enabled, the window dimensions reported by the active terminal are swapped. This workaround is required
on some older VTE-based terminal emulators.

1.3. API Reference 21

Term-Image, Release 0.6.1

Note: This affects Auto Cell Ratio computation and size computations for Graphics-based Render Styles.

term_image.get_cell_ratio()

Returns the global cell ratio.

See set_cell_ratio().

term_image.set_cell_ratio(ratio)
Sets the global cell ratio.

Parameters
ratio (float | term_image.AutoCellRatio) – Can be one of the following values.

• A positive float value.

• AutoCellRatio.FIXED, the ratio is immediately determined from the active terminal.

• AutoCellRatio.DYNAMIC, the ratio is determined from the active terminal whenever
get_cell_ratio() is called, though with some caching involved, such that the ratio is
re-determined only if the terminal size changes.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid value.

• term_image.exceptions.TermImageError – Auto cell ratio is not supported in the ac-
tive terminal or on the current platform.

This value is taken into consideration when setting image sizes for text-based render styles, in order to preserve
the aspect ratio of images drawn to the terminal.

Note: Changing the cell ratio does not automatically affect any image that has a fixed size. For a change in cell
ratio to take effect, the image’s size has to be re-set.

Attention: See Auto Cell Ratio for details about the auto modes.

term_image.set_query_timeout(timeout)
Sets the timeout for Terminal Queries.

Parameters
timeout (float) – Time limit for awaiting a response from the terminal, in seconds.

Raises

• TypeError – timeout is not a float.

• ValueError – timeout is less than or equal to zero.

22 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Term-Image, Release 0.6.1

1.3.2 image Module

Functions

These functions automatically detect the best supported render style for the current terminal.

Since all classes share a common interface (as defined by BaseImage), any operation supported by one image class
can be performed on any other image class, except style-specific operations.

auto_image_class Selects the image render style that best suits the current
terminal emulator.

AutoImage Creates an image instance from a PIL image instance.
from_file Creates an image instance from an image file.
from_url Creates an image instance from an image URL.

term_image.image.auto_image_class()

Selects the image render style that best suits the current terminal emulator.

Returns
An image class (a subclass of BaseImage).

Return type
term_image.image.common.ImageMeta

term_image.image.AutoImage(image, *, width=None, height=None, scale=(1.0, 1.0))
Creates an image instance from a PIL image instance.

Returns
An instance of the automatically selected image render style (as returned by
auto_image_class()).

Return type
term_image.image.common.BaseImage

Same arguments and raised exceptions as the BaseImage class constructor.

term_image.image.from_file(filepath, **kwargs)
Creates an image instance from an image file.

Returns
An instance of the automatically selected image render style (as returned by
auto_image_class()).

Return type
term_image.image.common.BaseImage

Same arguments and raised exceptions as BaseImage.from_file().

term_image.image.from_url(url, **kwargs)
Creates an image instance from an image URL.

Returns
An instance of the automatically selected image render style (as returned by
auto_image_class()).

Return type
term_image.image.common.BaseImage

Same arguments and raised exceptions as BaseImage.from_url().

1.3. API Reference 23

Term-Image, Release 0.6.1

Enumerations

ImageSource Image source type.
Size Enumeration for automatic sizing.

class term_image.image.ImageSource(value)
Bases: enum.Enum

Image source type.

FILE_PATH

The instance was derived from a path to a local image file.

PIL_IMAGE

The instance was derived from a PIL image instance.

URL

The instance was derived from an image URL.

class term_image.image.Size(value)
Bases: enum.Enum

Enumeration for automatic sizing.

AUTO

Equivalent to ORIGINAL if it will fit into the available size, else FIT.

FIT

The image size is set to fit optimally within the available size.

FIT_TO_WIDTH

The size is set such that the width is exactly the available width, regardless of the cell ratio.

ORIGINAL

The image size is set such that the image is rendered with as many pixels as the the original image consists
of.

24 Chapter 1. Contents

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

Term-Image, Release 0.6.1

Image Classes

Class Hierachy

• ImageMeta

• BaseImage

– TextImage

∗ BlockImage

– GraphicsImage

∗ ITerm2Image

∗ KittyImage

The Classes

ImageMeta Type of all render style classes.
BaseImage Base of all render styles.
TextImage Base of all Text-based Render Styles.
BlockImage A render style using unicode half blocks and 24-bit

colour escape codes.
GraphicsImage Base of all Graphics-based Render Styles.
ITerm2Image A render style using the iTerm2 inline image protocol.
KittyImage A render style using the Kitty terminal graphics protocol.

class term_image.image.ImageMeta(name, bases, dict, **kwds)
Bases: term_image.utils.ClassPropertyMeta, abc.ABCMeta

Type of all render style classes.

Note:

For all render style classes (instances of this class) defined within this package, str(cls) yields the same
value as cls.style.
For render style classes defined outside this package (subclasses of those defined within this package),
str(cls) is equivalent to repr(cls).

Instance Properties:

style Name of the render style [category].

property style

Name of the render style [category].

Returns

• The name of the render style [category] implemented by the invoking class, if defined
within this package (term_image)

• None, if the invoking class is defined outside this package (term_image)

1.3. API Reference 25

https://docs.python.org/3/library/abc.html#abc.ABCMeta

Term-Image, Release 0.6.1

Type
Optional[str]

Examples

For a class defined within this package:

>>> from term_image.image import KittyImage
>>> KittyImage.style
'kitty'

For a class defined outside this package:

>>> from term_image.image import KittyImage
>>> class MyImage(KittyImage): pass
>>> MyImage.style is None
True

Hint: Equivalent to str(cls) for all render style classes (instances of ImageMeta) defined within this
package.

class term_image.image.BaseImage(image, *, width=None, height=None, scale=(1.0, 1.0))
Bases: object

Base of all render styles.

Parameters

• image (PIL.Image.Image) – Source image.

• width (Union[int, Size, None]) – Can be

– an integer; horizontal dimension of the image, in columns.

– a Size enum member.

• height (Union[int, Size, None]) – Can be

– an integer; vertical dimension of the image, in lines.

– a Size enum member.

• scale (Tuple[float, float]) – The fraction of the size (on respective axes) to render
the image with.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid value.

Propagates exceptions raised by set_size(), if width or height is given.

Note:

• If neither width nor height is given (or both are None), FIT applies.

26 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Term-Image, Release 0.6.1

• The image size is multiplied by the scale on respective axes when the image is rendered.

• For animated images, the seek position is initialized to the current seek position of the given image.

• It’s allowed to set properties for animated images on non-animated ones, the values are simply ignored.

Attention: This class cannot be directly instantiated. Image instances should be created from its subclasses.

Instance Properties:

closed Instance finalization status
frame_duration Duration of a single frame for animated images
height The unscaled height of the image
is_animated True if the image is animated.
original_size Size of the source image (in pixels)
n_frames The number of frames in the image
rendered_height The scaled height of the image
rendered_size The scaled size of the image
rendered_width The scaled width of the image
scale Image scale
scale_x Horizontal scale
scale_y Vertical scale
size The unscaled size of the image
source The source from which the instance was initialized
source_type The kind of source from which the instance was ini-

tialized
width The unscaled width of the image

Class Properties:

forced_support Render style forced support status

Instance Methods:

close Finalizes the instance and releases external resources.
draw Draws an image to standard output.
seek Changes current image frame.
set_size Sets the image size with extended control.
tell Returns the current image frame number.

Class Methods:

from_file Creates an instance from an image file.
from_url Creates an instance from an image URL.
is_supported Checks if the implemented render style is supported

by the active terminal.

Class/Instance Methods:

1.3. API Reference 27

Term-Image, Release 0.6.1

set_render_method Sets the render method used by instances of a render
style class that implements multiple render methods.

property closed

Instance finalization status

Type
bool

property forced_support

Render style forced support status

Type
bool

GET:
Returns the forced support status of the render style of the invoker.

SET:
Forced support is enabled or disabled for the render style of the invoker.

If forced support is:

• enabled, the render style is treated as if it were supported, regardless of the return value of
is_supported().

• disabled, the return value of is_supported() determines if the render style is supported or not.

By default, forced support is disabled by the base style class (BaseImage).

Note:

• This property is descendant.

• This doesn’t affect the return value of is_supported() but may affect operations that require that a
render style be supported e.g instantiation of some render style classes.

property frame_duration

Duration of a single frame for animated images

Returns

• A duration (in seconds), if the image is animated.

• None, if the image is not animated.

Type
Optional[float]

Setting this on non-animated images is simply ignored.

property height

The unscaled height of the image

Returns

• The image height (in lines), if the image size is fixed.

• A Size enum member; if the image size is dynamic.

28 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Term-Image, Release 0.6.1

Type
Union[Size, int]

SETTABLE VALUES:

• a positive int; the image height is set to the given value and the width is set proportionally.

• a Size enum member; the image size is set as prescibed by the enum member.

• None; equivalent to FIT.

Setting this

• results in a fixed size.

• resets the recognized advanced sizing options to their defaults.

property is_animated

True if the image is animated. Otherwise, False.

property original_size

Size of the source image (in pixels)

Type
Tuple[int, int]

property n_frames: int

The number of frames in the image

Type
int

property rendered_height

The scaled height of the image

Also the exact number of lines that the drawn image will occupy in a terminal.

Type
int

property rendered_size

The scaled size of the image

Also the exact number of columns and lines (respectively) that the drawn image will occupy in a terminal.

Type
Tuple[int, int]

property rendered_width

The scaled width of the image

Also the exact number of columns that the drawn image will occupy in a terminal.

Type
int

property scale

Image scale

SETTABLE VALUES:

• A scale value; sets both axes.

• A tuple of two scale values; sets (x, y) respectively.

1.3. API Reference 29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Term-Image, Release 0.6.1

A scale value is a float in the range 0.0 < value <= 1.0.

Type
Tuple[float, float]

property scale_x

Horizontal scale

A scale value is a float in the range 0.0 < x <= 1.0.

Type
float

property scale_y

Vertical scale

A scale value is a float in the range 0.0 < y <= 1.0.

Type
float

property size

The unscaled size of the image

Returns

• The image size, (columns, lines), if the image size is fixed.

• A Size enum member, if the image size is dynamic.

Type
Union[Size, Tuple[int, int]]

SETTABLE VALUES:

• A Size enum member; the image size is set as prescibed by the enum member.

Setting this

• implies dynamic sizing i.e the size is computed whenever the image is rendered.

• resets the recognized advanced sizing options to their defaults.

This is multiplied by the scale on respective axes when the image is rendered.

property source

The source from which the instance was initialized

Type
Union[PIL.Image.Image, str]

property source_type

The kind of source from which the instance was initialized

Type
ImageSource

property width

The unscaled width of the image

Returns

• The image width (in columns), if the image size is fixed.

• A Size enum member; if the image size is dynamic.

30 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/stdtypes.html#str

Term-Image, Release 0.6.1

Type
Union[Size, int]

SETTABLE VALUES:

• a positive int; the image width is set to the given value and the height is set proportionally.

• a Size enum member; the image size is set as prescibed by the enum member.

• None; equivalent to FIT.

Setting this

• results in a fixed size.

• resets the recognized advanced sizing options to their defaults.

close()

Finalizes the instance and releases external resources.

• In most cases, it’s not neccesary to explicity call this method, as it’s automatically called when the
instance is garbage-collected.

• This method can be safely called mutiple times.

• If the instance was initialized with a PIL image, the PIL image is never finalized.

draw(h_align=None, pad_width=None, v_align=None, pad_height=None, alpha=0.1568627450980392, *,
scroll=False, animate=True, repeat=-1, cached=100, check_size=True, **style)

Draws an image to standard output.

Parameters

• h_align (Optional[str]) – Horizontal alignment (“left” / “<”, “center” / “|” or “right”
/ “>”). Default: center.

• pad_width (Optional[int]) – Number of columns within which to align the image.

– Excess columns are filled with spaces.

– Must not be greater than the available terminal width.

– Default: terminal width, minus horizontal allowance.

• v_align (Optional[str]) – Vertical alignment (“top”/”^”, “middle”/”-” or “bot-
tom”/”_”). Default: middle.

• pad_height (Optional[int]) – Number of lines within which to align the image.

– Excess lines are filled with spaces.

– Must not be greater than the available terminal height, for animations.

– Default: terminal height, minus vertical allowance.

• alpha (Optional[float, str]) – Transparency setting.

– If None, transparency is disabled (alpha channel is removed).

– If a float (0.0 <= x < 1.0), specifies the alpha ratio above which pixels are taken as
opaque. (Applies to only text-based render styles).

– If a string, specifies a color to replace transparent background with. Can be:

∗ ”#” -> The terminal’s default background color (or black, if undetermined) is used.

1.3. API Reference 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Term-Image, Release 0.6.1

∗ A hex color e.g ffffff, 7faa52.

• scroll (bool) – Only applies to non-animations. If True, allows the image’s rendered
height to be greater than the available terminal height.

• animate (bool) – If False, disable animation i.e draw only the current frame of an ani-
mated image.

• repeat (int) – The number of times to go over all frames of an animated image. A
negative value implies infinite repetition.

• cached (Union[bool, int]) – Determines if rendered frames of an animated image
will be cached (for speed up of subsequent renders of the same frame) or not.

– If bool, it directly sets if the frames will be cached or not.

– If int, caching is enabled only if the framecount of the image is less than or equal to the
given number.

• check_size (bool) – If False, does not perform size validation for non-animations.

• style (Any) – Style-specific render parameters. See each subclass for it’s own usage.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid value.

• ValueError – Unable to convert or resize image.

• term_image.exceptions.InvalidSizeError – The image’s rendered size can not
fit into the available terminal size.

• term_image.exceptions.StyleError – Unrecognized style-specific parameter(s).

• If set_size() was used to set the image size, the horizontal and vertical allowances (set when
set_size() was called) are taken into consideration during size validation. If the size was set via
another means or the size is dynamic, the default allowances apply.

• For non-animations, if the image size was set with FIT_TO_WIDTH , the image height is not validated
and setting scroll is unnecessary.

• animate, repeat and cached apply to animated images only. They are simply ignored for non-animated
images.

• For animations (i.e animated images with animate set to True):

– scroll is ignored.

– Image size and padding height are always validated, if set or given.

– with the exception of native animations provided by some render styles.

• Animations, by default, are infinitely looped and can be terminated with SIGINT (CTRL + C), raising
KeyboardInterrupt.

classmethod from_file(filepath, **kwargs)
Creates an instance from an image file.

Parameters

• filepath (str | os.PathLike) – Relative/Absolute path to an image file.

• kwargs (None | int | Tuple[float, float]) – Same keyword arguments as
the class constructor.

32 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/signal.html#signal.SIGINT
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Term-Image, Release 0.6.1

Returns
A new instance.

Raises

• TypeError – filepath is of an inappropriate type.

• FileNotFoundError – The given path does not exist.

• IsADirectoryError – Propagated from from PIL.Image.open().

• PIL.UnidentifiedImageError – Propagated from from PIL.Image.open().

Return type
term_image.image.common.BaseImage

Also Propagates exceptions raised or propagated by the class constructor.

classmethod from_url(url, **kwargs)
Creates an instance from an image URL.

Parameters

• url (str) – URL of an image file.

• kwargs (None | int | Tuple[float, float]) – Same keyword arguments as
the class constructor.

Returns
A new instance.

Raises

• TypeError – url is not a string.

• ValueError – The URL is invalid.

• term_image.exceptions.URLNotFoundError – The URL does not exist.

• PIL.UnidentifiedImageError – Propagated from PIL.Image.open().

Return type
term_image.image.common.BaseImage

Also propagates connection-related exceptions from requests.get() and exceptions raised or propa-
gated by the class constructor.

Note: This method creates a temporary file, but only after successful initialization. The file is removed:

• when close() is called,

• upon exiting a with statement block that uses the instance as a context manager, or

• when the instance is garbage collected.

abstract classmethod is_supported()

Checks if the implemented render style is supported by the active terminal.

Returns
True if the render style implemented by the invoking class is supported by the active ter-
minal. Otherwise, False.

Return type
bool

1.3. API Reference 33

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#IsADirectoryError
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open
https://pillow.readthedocs.io/en/stable/PIL.html#PIL.UnidentifiedImageError
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pillow.readthedocs.io/en/stable/PIL.html#PIL.UnidentifiedImageError
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open
https://requests.readthedocs.io/en/stable/api/#requests.get
https://docs.python.org/3/library/functions.html#bool

Term-Image, Release 0.6.1

Attention: Support checks for most (if not all) render styles require querying the active terminal the
first time they’re executed.

Hence, it’s advisable to perform all neccesary support checks (call this method on required style classes)
at an early stage of a program, before user input is expected. If using automatic style selection, calling
auto_image_class() only should be sufficient.

seek(pos)
Changes current image frame.

Parameters
pos (int) – New frame number.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid
value.

Frame numbers start from 0 (zero).

classmethod set_render_method(method=None)
Sets the render method used by instances of a render style class that implements multiple render methods.

Parameters
method (str | None) – The render method to be set or None for a reset (case-insensitive).

Raises

• TypeError – method is not a string or None.

• ValueError – the given method is not implmented by the invoking class (or class of
the invoking instance).

See the Render Methods section in the description of subclasses that implement such for their specific
usage.

If method is not None and this method is called via:

• a class, the class-wide render method is set.

• an instance, the instance-specific render method is set.

If method is None and this method is called via:

• a class, the class-wide render method is unset, so that it uses that of its parent style class (if any) or
the default.

• an instance, the instance-specific render method is unset, so that it uses the class-wide render method
thenceforth.

Any instance without a render method set uses the class-wide render method.

Note: method = None is always allowed, even if the render style doesn’t implement multiple render
methods.

The class-wide render method is descendant.

34 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Term-Image, Release 0.6.1

set_size(width=None, height=None, h_allow=0, v_allow=2, maxsize=None)
Sets the image size with extended control.

Parameters

• width (int | term_image.image.common.Size | None) – Can be

– an integer; horizontal dimension of the image, in columns.

– a Size enum member.

• height (int | term_image.image.common.Size | None) – Can be

– an integer; vertical dimension of the image, in lines.

– a Size enum member.

• h_allow (int) – Horizontal allowance i.e minimum number of columns to leave un-
used.

• v_allow (int) – Vertical allowance i.e minimum number of lines to leave unused.

• maxsize (Tuple[int, int] | None) – If given, as (columns, lines), it’s used
instead of the terminal size.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid
value.

• ValueError – Both width and height are specified.

• ValueError – The available size is too small for automatic sizing.

• term_image.exceptions.InvalidSizeError – maxsize is given and the resulting
size will not fit into it.

If neither width nor height is given (or both are None), FIT applies.

If width or height is a Size enum member, automatic sizing applies as prescribed by the enum member.

When FIT_TO_WIDTH is given,

• size validation operations take it into consideration.

• Vertical allowance is nullified.

Allowances are ignored when maxsize is given.

Render formatting and size validation operations recognize and respect the horizontal and vertical al-
lowances, until the image size is re-set.

Note: The size is checked to fit in only when maxsize is given along with a fixed width or height because
draw() is generally not the means of drawing such an image and all rendering methods don’t perform any
sort of size validation.

If the validation is not desired, specify only one of maxsize and width or height, not both.

tell()

Returns the current image frame number.

Return type
int

1.3. API Reference 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

Term-Image, Release 0.6.1

class term_image.image.TextImage(image, *, width=None, height=None, scale=(1.0, 1.0))
Bases: term_image.image.common.BaseImage

Base of all Text-based Render Styles.

See BaseImage for the description of the constructor.

Important: Instantiation of subclasses is always allowed, even if the current terminal does not [fully] support
the render style.

To check if the render style is fully supported in the current terminal, use is_supported().

Attention: This class cannot be directly instantiated. Image instances should be created from its subclasses.

class term_image.image.BlockImage(image, *, width=None, height=None, scale=(1.0, 1.0))
Bases: term_image.image.common.TextImage

A render style using unicode half blocks and 24-bit colour escape codes.

See TextImage for the description of the constructor.

class term_image.image.GraphicsImage(image, *, width=None, height=None, scale=(1.0, 1.0))
Bases: term_image.image.common.BaseImage

Base of all Graphics-based Render Styles.

Raises
term_image.exceptions.StyleError – The active terminal doesn’t support the render
style.

See BaseImage for the description of the constructor.

Attention: This class cannot be directly instantiated. Image instances should be created from its subclasses.

Tip: To allow instantiation regardless of whether the render style is supported or not, enable forced_support.

36 Chapter 1. Contents

Term-Image, Release 0.6.1

class term_image.image.ITerm2Image(image, *, width=None, height=None, scale=(1.0, 1.0))
Bases: term_image.image.common.GraphicsImage

A render style using the iTerm2 inline image protocol.

See GraphicsImage for the complete description of the constructor.

Render Methods

ITerm2Image provides two methods of rendering images, namely:

LINES (default)
Renders an image line-by-line i.e the image is evenly split across the number of lines it should occupy.

Pros:

• Good for use cases where it might be required to trim some lines of the image.

Cons:

• Image drawing is very slow on iTerm2 due to the terminal emulator’s performance.

WHOLE
Renders an image all at once i.e the entire image data is encoded into one line of the rendered output,
such that the entire image is drawn once by the terminal and still occupies the correct amount of lines and
columns.

Pros:

• Render results are more compact (i.e less in character count) than with the LINES method since the
entire image is encoded at once.

• Image drawing is faster than with LINES on most terminals.

• Smoother animations.

Cons:

• This method currently doesn’t work well on iTerm2 and WezTerm when the image height is greater
than the terminal height.

Note: The LINES method is the default only because it works properly in all cases, it’s more advisable to use
the WHOLE method except when the image height is greater than the terminal height or when trimming the
image is required.

The render method can be set with set_render_method() using the names specified above.

Style-Specific Render Parameters

See BaseImage.draw() (particularly the style parameter).

1.3. API Reference 37

Term-Image, Release 0.6.1

• method (None | str) → Render method override.

– None→ the current effective render method of the instance is used.

– default → None

• mix (bool) → Cell content inter-mix policy (Only supported on WezTerm, ignored otherwise).

– False→ existing contents of cells within the region covered by the drawn render output are erased

– True→ existing cell contents show under transparent areas of the drawn render output

– default → False

• compress (int) → ZLIB compression level, for renders re-encoded in PNG format.

– 0 <= compress <= 9

– 1→ best speed, 9→ best compression, 0→ no compression

– default → 4

– Results in a trade-off between render time and data size/draw speed

• native (bool) → Native animation policy.1

– True→ use the protocol’s native animation feature

– False→ use the normal animation

– default → False

– alpha, repeat, cached and style do not apply

– Ignored if the image is not animated or animate is False

– Normal restrictions for sizing of animations do not apply

– Uses WHOLE render method

– The terminal emulator completely controls the animation

• stall_native (bool) → Native animation execution control.

– True→ block until SIGINT (Ctrl+C) is recieved

– False→ return as soon as the image is transmitted

– default → True

Format Specification

See Render Format Specification.

[<method>] [m <mix>] [c <compress>]

• method→ render method override
1 Native animation support:
– Not all animated image formats may be supported by every supported terminal emulator
– Not all supported terminal emulators implement this feature of the protocol e.g on Konsole, the first frame is drawn but the image is not

animated

38 Chapter 1. Contents

Term-Image, Release 0.6.1

– L→ LINES render method (current frame only, for animated images)

– W→ WHOLE render method (current frame only, for animated images)

– N→ Native animationPage 38, 1 (ignored when used with non-animated images or ImageIterator)

– default → current effective render method of the instance

• m→ cell content inter-mix policy (Only supported in WezTerm, ignored otherwise)

– mix→ inter-mix policy

∗ 0→ existing contents of cells in the region covered by the drawn render output will be erased

∗ 1→ existing cell contents show under transparent areas of the drawn render output

– default → m0

– e.g m0, m1

• c→ ZLIB compression level, for renders re-encoded in PNG format

– compress→ compression level

∗ An integer in the range 0 <= x <= 9

∗ 1→ best speed, 9→ best compression, 0→ no compression

– default → c4

– e.g c0, c9

– Results in a trade-off between render time and data size/draw speed

Important: Currently supported terminal emulators are:

• iTerm2

• Konsole >= 22.04.0

• WezTerm

Class/Instance Properties:

jpeg_quality JPEG encoding quality
read_from_file Read-from-file optimization policy

Class Properties:

native_anim_max_bytes Maximum size (in bytes) of image data for native an-
imation

1.3. API Reference 39

https://iterm2.com
https://konsole.kde.org
https://wezfurlong.org/wezterm/

Term-Image, Release 0.6.1

Class Methods:

clear Clears images.

property jpeg_quality

JPEG encoding quality

Type
int

GET:
Returns the effective JPEG encoding quality of the invoker (negative if disabled).

SET:
If invoked via:

• a class, the class-wide quality is set.

• an instance, the instance-specific quality is set.

DELETE:
If invoked via:

• a class, the class-wide quality is unset.

• an instance, the instance-specific quality is unset.

If:

• value < 0; JPEG encoding is disabled.

• 0 <= value <= 95; JPEG encoding is enabled with the given quality.

If unset for:

• a class, it uses that of its parent iterm2 style class (if any) or the default (disabled), if unset for all
parents or the class has no parent iterm2 style class.

• an instance, it uses that of it’s class.

By default, the quality is unset i.e JPEG encoding is disabled and images are encoded in the PNG format
(when not reading directly from file) but in some cases, higher and/or faster compression may be desired.
JPEG encoding is significantly faster than PNG encoding and produces smaller (in data size) output but at
the cost of image quality.

Note:

• This property is descendant.

• This optimization applies to only re-encoded (i.e not read directly from file) non-transparent ren-
ders.

Tip: The transparency status of some images can not be correctly determined in an efficient way at render
time. To ensure JPEG encoding is always used for a re-encoded render, disable transparency or set a
background color.

40 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int

Term-Image, Release 0.6.1

Furthermore, to ensure that renders with the WHOLE render method are always re-encoded, disable
read_from_file.

This optimization is useful in improving non-native animation performance.

See also:

• the alpha parameter of draw() and the #, bgcolor fields of the Render Format Specification

• read_from_file

property native_anim_max_bytes

Maximum size (in bytes) of image data for native animation

Type
int

GET:
Returns the set value.

SET:
A positive integer; the value is set on the iterm2 render style baseclass (ITerm2Image).

DELETE:
The value is unset, thereby resetting it to the default.

TermImageWarning is issued (and shown only the first time, except a filter is set to do otherwise) if the
image data size for a native animation is above this value.

Note: This property is descendant but is always unset for all subclasses and instances. Hence, set-
ting/resetting it on this class, a subclass or an instance affects this class, all its subclasses and all their
instances.

Warning: This property should be altered with caution to avoid excessive memory usage.

property read_from_file

Read-from-file optimization policy

Type
bool

GET:
Returns the effective read-from-file policy of the invoker.

SET:
If invoked via:

• a class, the class-wide policy is set.

• an instance, the instance-specific policy is set.

DELETE:
If invoked via:

• a class, the class-wide policy is unset.

1.3. API Reference 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Term-Image, Release 0.6.1

• an instance, the instance-specific policy is unset.

If the value is:

• True, image data is read directly from file when possible and no image manipulation is required.

• False, images are always re-encoded (in the PNG format by default).

If unset for:

• a class, it uses that of its parent iterm2 style class (if any) or the default (True), if unset for all parents
or the class has no parent iterm2 style class.

• an instance, it uses that of it’s class.

By default, the policy is unset, which is equivalent to True i.e the optimization is enabled.

Note:

• This property is descendant.

• This is an optimization to reduce render times and is only applicable to the WHOLE render method,
since the the LINES method inherently requires image manipulation.

• This property does not affect animations. Native animations are always read from file when possible
and frames of non-native animations have to be re-encoded.

See also:

jpeg_quality

classmethod clear(cursor=False, now=False)
Clears images.

Parameters

• cursor (bool) – If True, all images intersecting with the current cursor position are
cleared. Otherwise, all visible images are cleared.

• now (bool) – If True the images are cleared immediately, without affecting any stan-
dard I/O stream. Otherwise they’re cleared when next sys.stdout is flushed.

Note: Required and works only on Konsole, as text doesn’t overwrite images.

class term_image.image.KittyImage(image, *, width=None, height=None, scale=(1.0, 1.0))
Bases: term_image.image.common.GraphicsImage

A render style using the Kitty terminal graphics protocol.

See GraphicsImage for the complete description of the constructor.

42 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/sys.html#sys.stdout

Term-Image, Release 0.6.1

Render Methods

KittyImage provides two methods of rendering images, namely:

LINES (default)
Renders an image line-by-line i.e the image is evenly split across the number of lines it should occupy.

Pros:

• Good for use cases where it might be required to trim some lines of the image.

WHOLE
Renders an image all at once i.e the entire image data is encoded into one line of the rendered output,
such that the entire image is drawn once by the terminal and still occupies the correct amount of lines and
columns.

Pros:

• Render results are more compact (i.e less in character count) than with the LINES method since the
entire image is encoded at once.

The render method can be set with set_render_method() using the names specified above.

Style-Specific Render Parameters

See BaseImage.draw() (particularly the style parameter).

• method (None | str) → Render method override.

– None→ the current effective render method of the instance is used.

– default → None

• z_index (int) → The stacking order of graphics and text for non-animations.

– An integer in the signed 32-bit range (excluding -(2**31))

– >= 0→ the image will be drawn above text

– < 0→ the image will be drawn below text

– < -(2**31)/2→ the image will be drawn below cells with non-default background color

– default → 0

– Overlapping graphics on different z-indexes will be blended (by the terminal emulator) if they are
semi-transparent.

– To inter-mix text with graphics, see the mix parameter.

• mix (bool) → Graphics/Text inter-mix policy.

– False→ text within the region covered by the drawn render output will be erased, though text can
be inter-mixed with graphics after drawing

– True→ text within the region covered by the drawn render output will NOT be erased

– default → False

• compress (int) → ZLIB compression level.

– 0 <= compress <= 9

1.3. API Reference 43

Term-Image, Release 0.6.1

– 1→ best speed, 9→ best compression, 0→ no compression

– default → 4

– Results in a trade-off between render time and data size/draw speed

Format Specification

See Render Format Specification.

[<method>] [z <z-index>] [m <mix>] [c <compress>]

• method→ render method override

– L→ LINES render method (current frame only, for animated images)

– W→ WHOLE render method (current frame only, for animated images)

– default → Current effective render method of the image

• z→ graphics/text stacking order

– z-index→ z-index

∗ An integer in the signed 32-bit range (excluding -(2**31))

∗ >= 0→ the render output will be drawn above text

∗ < 0→ the render output will be drawn below text

∗ < -(2**31)/2 → the render output will be drawn below cells with non-default background
color

– default → z0 (z-index zero)

– e.g z0, z1, z-1, z2147483647, z-2147483648

– overlapping graphics on different z-indexes will be blended (by the terminal emulator) if they are
semi-transparent

• m→ graphics/text inter-mix policy

– mix→ inter-mix policy

∗ 0→ text within the region covered by the drawn render output will be erased, though text can
be inter-mixed with graphics after drawing

∗ 1→ text within the region covered by the drawn render output will NOT be erased

– default → m0

– e.g m0, m1

• c→ ZLIB compression level

– compress→ compression level

∗ An integer in the range 0 <= compress <= 9

∗ 1→ best speed, 9→ best compression, 0→ no compression

– default → c4

44 Chapter 1. Contents

Term-Image, Release 0.6.1

– e.g c0, c9

– results in a trade-off between render time and data size/draw speed

Important: Currently supported terminal emulators are:

• Kitty >= 0.20.0.

• Konsole >= 22.04.0.

Class Methods:

clear Clears images.

classmethod clear(*, cursor=False, z_index=None, now=False)
Clears images.

Parameters

• cursor (bool) – If True, all images intersecting with the current cursor position are
cleared.

• z_index (int | None) – An integer in the signed 32-bit range. If given, all images
on the given z-index are cleared.

• now (bool) – If True the images are cleared immediately, without affecting any stan-
dard I/O stream. Otherwise they’re cleared when next sys.stdout is flushed.

Aside now, only one other argument may be given. If no argument is given (aside now) or default values
are given, all images visible on the screen are cleared.

Note: This method does nothing if the render style is not supported.

Context Management Protocol Support

BaseImage instances are context managers i.e they can be used with the with statement as in:

with from_url(url) as image:
...

Using an instance as a context manager guarantees instant object finalization (i.e clean-up/release of resources), es-
pecially for instances with URL sources (see BaseImage.from_url()).

1.3. API Reference 45

https://sw.kovidgoyal.net/kitty/
https://konsole.kde.org
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/sys.html#sys.stdout

Term-Image, Release 0.6.1

Iteration Support

Animated images are iterable i.e they can be used with the for statement (and other means of iteration such as unpack-
ing) as in:

for frame in from_file("animated.gif"):
...

Subsequent frames of the image are yielded on subsequent iterations.

Note:

• iter(anim_image) returns an ImageIterator instance with a repeat count of 1, hence caching is disabled.

• The frames are unformatted and transparency is enabled i.e as returned by str(image).

For extensive or custom iteration, use ImageIterator directly.

Other Classes

class term_image.image.ImageIterator(image, repeat=-1, format_spec='', cached=100)
Bases: object

Effeciently iterate over rendered frames of an animated image

Parameters

• image (BaseImage) – Animated image.

• repeat (int) – The number of times to go over the entire image. A negative value implies
infinite repetition.

• format_spec (str) – The format specifier for the rendered frames (default: auto).

• cached (Union[bool, int]) – Determines if the rendered frames will be cached (for
speed up of subsequent renders) or not. If it is

– a boolean, it directly sets if the frames will be cached or not.

– an integer, caching is enabled only if the framecount of the image is less than or equal
to the given number.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid value.

• term_image.exceptions.StyleError – Invalid style-specific format specifier.

• If repeat equals 1, caching is disabled.

• The iterator has immediate response to changes in the image size and scale.

• If the image size is dynamic, it’s computed per frame.

• The number of the last yielded frame is set as the image’s seek position.

46 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Term-Image, Release 0.6.1

• Directly adjusting the seek position of the image doesn’t affect iteration. Use ImageIterator.seek()
instead.

• After the iterator is exhausted, the underlying image is set to frame 0.

Instance Properties:

loop_no Iteration repeat countdown

Instance Methods:

close Closes the iterator and releases resources used.
seek Sets the frame number to be yielded on the next iter-

ation without affecting the repeat count.

property loop_no

Iteration repeat countdown

Type
int

Changes on the first iteration of each loop, except for infinite iteration where it’s always -1.

close()

Closes the iterator and releases resources used.

Does not reset the frame number of the underlying image.

Note: This method is automatically called when the iterator is exhausted or garbage-collected.

seek(pos)
Sets the frame number to be yielded on the next iteration without affecting the repeat count.

Parameters
pos (int) – Next frame number.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid
value.

• term_image.exceptions.TermImageError – Iteration has not yet started or the
iterator is exhausted/closed.

Frame numbers start from 0 (zero).

1.3. API Reference 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Term-Image, Release 0.6.1

1.3.3 widget Module

Classes:

UrwidImage Image widget (box/flow) for the urwid TUI framework.
UrwidImageCanvas Image canvas for the urwid TUI framework.
UrwidImageScreen A screen that supports drawing images.

class term_image.widget.UrwidImage(image, format_spec='', *, upscale=False)
Bases: urwid.widget.Widget

Image widget (box/flow) for the urwid TUI framework.

Parameters

• image (BaseImage) – The image to be rendered by the widget.

• format_spec (str) – Render format specifier. Padding width and height are ignored.

• upscale (bool) – If True, the image will be upscaled to fit maximally within the avail-
able size, if neccessary, while still preserving the aspect ratio. Otherwise, the image is
never upscaled.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid value.

• term_image.exceptions.StyleError – Invalid style-specific format specifier.

• term_image.exceptions.UrwidImageError – Too many image widgets rendering
images with the kitty render style.

Any ample space in the widget’s render size is filled with spaces.
For animated images, the current frame (at render-time) is rendered.

Tip: If image is of a graphics-based render style and the widget is being used as or within a flow widget, with
overlays or in any other case where the canvas will require vertical trimming, make sure to use a render method
that splits images across lines such as the LINES render method for kitty and iterm2 render styles.

Note:

• The z-index style-specific format spec field for KittyImage is ignored as this is used internally.

• A maximum of 2**32 - 2 instances initialized with KittyImage instances may exist at the same time.

Important: This is defined if and only if the urwid package is available.

Instance Properties:

48 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Term-Image, Release 0.6.1

image The image rendered by the widget.

Instance Methods:

clear Clears all images drawn by the widget, if the image
rendered by the widget is of the kitty render style.

Static Methods:

clear_all Clears all on-screen images of graphics-based styles
that support/require such an operation.

Class Methods:

set_error_placeholder Sets the widget to be rendered in place of an image
when rendering fails.

property image

The image rendered by the widget.

Type
BaseImage

clear(*, now=False)
Clears all images drawn by the widget, if the image rendered by the widget is of the kitty render style.

Parameters
now (bool) – If True the images are cleared immediately. Otherwise they’re cleared just
before the next screen redraw.

static clear_all(*, now=False)
Clears all on-screen images of graphics-based styles that support/require such an operation.

Parameters
now (bool) – If True the images are cleared immediately. Otherwise they’re cleared just
before the next screen redraw.

classmethod set_error_placeholder(widget)
Sets the widget to be rendered in place of an image when rendering fails.

Parameters
widget (urwid.widget.Widget | None) – The placholder widget or None to remove
the placeholder.

Raises
TypeError – widget is not an urwid widget.

If set, any exception raised during rendering is suppressed and the placeholder is rendered in place of the
image.

class term_image.widget.UrwidImageCanvas(render, size, image_size)
Bases: urwid.canvas.Canvas

Image canvas for the urwid TUI framework.

1.3. API Reference 49

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError

Term-Image, Release 0.6.1

Parameters

• render (str) – The rendered image.

• size (Tuple[int, int]) – The canvas size. Also, the size of the rendered (and format-
ted) image.

• image_size (Tuple[int, int]) – The size with which the image was rendered (ex-
cluding padding).

Note: The canvas outputs blanks (spaces) for graphics-based images when horizontal trimming is required
(e.g when a widget is laid over an image). This is temporary as horizontal trimming will be implemented in the
future.

This canvas is intended to be rendered by UrwidImage (or a sublass of it) only. Otherwise, the output isn’t
guaranteed to be as expected.

Warning: The constructor of this class performs NO argument validation at all for the sake of performance.
If instantiating this class directly, make sure to pass appropriate arguments or create subclass, override the
constructor and perform the validation.

Important: This is defined if and only if the urwid package is available.

class term_image.widget.UrwidImageScreen(*args, **kwargs)
Bases: urwid.raw_display.Screen

A screen that supports drawing images.

It monitors images of some graphics-based render styles and clears them off the screen when necessary (e.g at
startup, when scrolling, upon terminal resize and at exit).

See the baseclass for further description.

Important: This is defined if and only if the urwid package is available.

Instance Methods:

draw_screen See the description of the baseclass' method.
flush See the baseclass' method for the description.
get_available_raw_input See the baseclass' method for the description.
write See the baseclass' method for the description.

draw_screen(maxres, canvas)
See the description of the baseclass’ method.

Synchronizes output on terminal emulators that support the feature to reduce/eliminate image
flickering and screen tearing.

Important: Synchronized with term_image.utils.lock_tty().

50 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://urwid.org/reference/display_modules.html#urwid.raw_display.Screen

Term-Image, Release 0.6.1

flush()

See the baseclass’ method for the description.

Important: Synchronized with term_image.utils.lock_tty().

get_available_raw_input()

See the baseclass’ method for the description.

Important: Synchronized with term_image.utils.lock_tty().

write(data)
See the baseclass’ method for the description.

Important: Synchronized with term_image.utils.lock_tty().

1.3.4 exceptions Module

Warnings:

TermImageWarning Package-specific warning category.

Exceptions:

TermImageError Exception baseclass.
URLNotFoundError Raised for 404 errors.
InvalidSizeError Raised for invalid image sizes.
StyleError Baseclass of style-specific exceptions.
GraphicsImageError Raised for errors specific to GraphicsImage and its

subclasses defined outside this package.
TextImageError Raised for errors specific to TextImage and its sub-

classes defined outside this package.
BlockImageError Raised for errors specific to BlockImage and its sub-

classes defined outside this package.
ITerm2ImageError Raised for errors specific to ITerm2Image and its sub-

classes defined outside this package.
KittyImageError Raised for errors specific to KittyImage and its sub-

classes defined outside this package.
UrwidImageError Raised for errors specific to UrwidImage.

exception term_image.exceptions.TermImageWarning

Bases: UserWarning

Package-specific warning category.

exception term_image.exceptions.TermImageError

Bases: Exception

Exception baseclass. Raised for generic errors.

1.3. API Reference 51

https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/exceptions.html#Exception

Term-Image, Release 0.6.1

exception term_image.exceptions.URLNotFoundError

Bases: FileNotFoundError, term_image.exceptions.TermImageError

Raised for 404 errors.

exception term_image.exceptions.InvalidSizeError

Bases: ValueError, term_image.exceptions.TermImageError

Raised for invalid image sizes.

exception term_image.exceptions.StyleError

Bases: term_image.exceptions.TermImageError

Baseclass of style-specific exceptions.

Never raised for errors pertaining to image classes defined in this package. Instead, the exception subclass specific
to each image class is raised.

Only raised for subclasses of BaseImage defined outside this package (which are not subclasses of any other
image class defined in this package).

Being the baseclass of all style-specific exceptions, it can be used be used to handle any style-specific error,
regardless of the render style it originated from.

exception term_image.exceptions.GraphicsImageError

Bases: term_image.exceptions.StyleError

Raised for errors specific to GraphicsImage and its subclasses defined outside this package.

exception term_image.exceptions.TextImageError

Bases: term_image.exceptions.StyleError

Raised for errors specific to TextImage and its subclasses defined outside this package.

exception term_image.exceptions.BlockImageError

Bases: term_image.exceptions.TextImageError

Raised for errors specific to BlockImage and its subclasses defined outside this package.

exception term_image.exceptions.ITerm2ImageError

Bases: term_image.exceptions.GraphicsImageError

Raised for errors specific to ITerm2Image and its subclasses defined outside this package.

exception term_image.exceptions.KittyImageError

Bases: term_image.exceptions.GraphicsImageError

Raised for errors specific to KittyImage and its subclasses defined outside this package.

exception term_image.exceptions.UrwidImageError

Bases: term_image.exceptions.TermImageError

Raised for errors specific to UrwidImage.

52 Chapter 1. Contents

https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError

Term-Image, Release 0.6.1

1.3.5 utils Module

Functions:

get_terminal_name_version Returns the name and version of the active terminal, if
available.

get_terminal_size Returns the current size of the active terminal.
lock_tty Synchronizes access to the active terminal.
read_tty_all Reads all available input directly from the active termi-

nal without blocking.
write_tty Writes to the active terminal and waits until complete

transmission.

term_image.utils.get_terminal_name_version()

Returns the name and version of the active terminal, if available.

Returns
A 2-tuple, (name, version). If either is not available, returns None in its place.

Return type
Tuple[str | None, str | None]

term_image.utils.get_terminal_size()

Returns the current size of the active terminal.

Returns
The terminal size in columns and lines.

Return type
os.terminal_size

Note: This implementation is quite different from shutil.get_terminal_size() and os.
get_terminal_size() in that it:

• gives the correct size of the active terminal even when output is redirected, in most cases

• gives different results in certain situations

• is what this library works with

term_image.utils.lock_tty(func)
Synchronizes access to the active terminal.

Parameters
func (function) – The function to be wrapped.

When a decorated function is called, a re-entrant lock is acquired by the current process or thread and released
after the call, such that any other decorated function called within another thread or subprocess waits until the
lock is fully released (i.e has been released as many times as acquired) by the current process or thread.

Note: It works across parent-/sub-processes, started directly or indirectly via multiprocessing.Process
(or a subclass of it), and their threads, provided multiprocessing.synchronize is supported on the host
platform. Otherwise, a warning is issued when starting a subprocess.

1.3. API Reference 53

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.terminal_size
https://docs.python.org/3/library/shutil.html#shutil.get_terminal_size
https://docs.python.org/3/library/os.html#os.get_terminal_size
https://docs.python.org/3/library/os.html#os.get_terminal_size
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process

Term-Image, Release 0.6.1

Warning: If multiprocessing.synchronize is supported and a subprocess is started within a call (pos-
sibly recursive) to a decorated function, the thread in which that occurs will be out of sync until that call
returns. Hence, avoid starting a subprocess within a decorated function.

term_image.utils.read_tty_all()

Reads all available input directly from the active terminal without blocking.

Returns
The input read.

Return type
bytes

Important: Synchronized with term_image.utils.lock_tty().

Note: Currently works on UNIX only, returns None on any other platform or when there is no active terminal.

term_image.utils.write_tty(data)
Writes to the active terminal and waits until complete transmission.

Parameters
data (bytes) – Data to be written.

Important: Synchronized with term_image.utils.lock_tty().

Note: Currently works on UNIX only, returns None on any other platform or when there is no active terminal.

1.4 Planned Features

In no particular order:

• Support for more terminal graphics protocols (See #23)

• More text-based render styles (See #57)

• Support for terminal emulators with less colors (See #61)

• Support for terminal emulators without Unicode support (See #58, #60)

• Support for fbTerm

• Support for open file objects

• Determination of frame duration per frame during animations and image iteration

• Asynchronous animation rendering

• Kitty image ID (See #40)

• Kitty native animation (See #40)

• Image zoom and pan functionalities

54 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://github.com/AnonymouX47/term-image/issues/23
https://github.com/AnonymouX47/term-image/issues/57
https://github.com/AnonymouX47/term-image/issues/61
https://github.com/AnonymouX47/term-image/issues/58
https://github.com/AnonymouX47/term-image/issues/60
https://code.google.com/archive/p/fbterm/
https://github.com/AnonymouX47/term-image/issues/40
https://github.com/AnonymouX47/term-image/issues/40

Term-Image, Release 0.6.1

• Image trimming

• Specify key to end animation

• Drawing images to an alternate output

• Source images from raw pixel data

• IPython Extension

• and much more. . .

1.5 Known Issues

1. Drawing of images and animations doesn’t work completely well with Python for Windows (tested in Windows
Terminal and MinTTY).

• Description: Some lines of the image seem to extend beyond the number of columns that they should
normally occupy by one or two columns.

This behaviour causes animations to go bizzare when lines extend beyond the width of the terminal emu-
lator.

• Comment: First of all, the issue seems to caused by the layer between Python and the terminal emulators
(i.e the PTY implementation in use) which “consumes” the escape sequences used to display images.

It is neither a fault of this library nor of the terminal emulators, as drawing of images and animations works
properly with WSL within Windows Terminal.

• Solution: A workaround is to leave some horizontal allowance of at least two columns to ensure the
image never reaches the right edge of the terminal.

This can be achieved in the library using the h_allow parameter of set_size().

2. Animations with the kitty render style on the Kitty terminal emulator might be glitchy for some images with
high resolution and size and/or sparse color distribution.

• Description: When the LINES render method is used, lines of the image might intermittently disappear.
When the WHOLE render method is used, the entire image might intermitently dissapear.

• Comment: This is due to the fact that drawing each frame requires clearing the previous frame off the
screen, since the terminal would otherwise blend subsequent frames. Not clearing previous frames would
break transparent animations and result in a performance lag that gets worse over time.

• Solution: Plans are in motion to implement support for native animations i.e utilizing the animation fea-
tures provided by the protocol (See #40).

1.6 FAQs

Why?

• Why not?

• To improve and extend the capabilities of CLI and TUI applications.

• Terminals emulators have always been and always will be!

What about Windows support?

1.5. Known Issues 55

https://github.com/AnonymouX47/term-image/issues/40

Term-Image, Release 0.6.1

• Only the new Windows Terminal seems to have proper ANSI support and mordern terminal emulator
features.

• Drawing images and animations doesn’t work completely well with Python for Windows. See Known
Issues.

• If stuck on Windows and want to use all features, you could use WSL + Windows Terminal.

Why are colours not properly reproduced?

• Some terminals support 24-bit colors but have a 256-color pallete. This limits color reproduction.

Why are images out of scale?

• If Auto Cell Ratio is supported and enabled, call enable_win_size_swap(). If this doesn’t work, then
open an issue here with adequate details.

• Otherwise, adjust the cell ratio using set_cell_ratio().

Why does my program get garbage input (possibly also written to the screen) or phantom keystrokes?

• This is most definitely due to slow reponse of the terminal emulator to Terminal Queries.

• To resolve this, set a higher timeout using set_query_timeout(). The default is
DEFAULT_QUERY_TIMEOUT seconds.

• You can also disable terminal queries using disable_queries() but note that this disables certain fea-
tures.

1.7 Glossary

Below are definitions of terms used across the API, exception messages and the documentation.

Note: For contributors, some of these terms are also used in the source code, as variable names, in comments,
docstrings, etc.

active terminal
The terminal emulator connected to the first TTY device discovered upon loading the term_image package.

At times, this may also be used to refer to the TTY device itself.

See also:

The Active Terminal

alignment
The position of a primary render output within its padding.

See also:

Alignment

allowance
The amount of space to be left unused on the terminal screen.

alpha threshold
Alpha ratio/value above which a pixel is taken as opaque (applies only to Text-based Render Styles).

See also:

Transparency

56 Chapter 1. Contents

https://github.com/microsoft/terminal
https://github.com/AnonymouX47/term-image/issues/new

Term-Image, Release 0.6.1

animated
Having multiple frames.

The frames of an animated image are generally meant to be displayed in rapid succession, to give the effect of
animation.

automatic size
automatic sizing

A form of sizing wherein the image size is computed based on a combination of the available size, the image’s
original size and a given width or height.

This form of sizing tries to preserve image aspect ratio and can be used with both fixed sizing and dynamic sizing.

See also:

manual sizing, Size and set_size()

available height
The remainder after vertical allowance is subtracted from the maximum amount of lines.

available size
The remainder after allowances are subtracted from the maximum frame size.

available width
The remainder after horizontal allowance is subtracted from the maximum amount of columns.

cell ratio
The aspect ratio (i.e the ratio of width to height) of a character cell on a terminal screen.

See also:

get_cell_ratio() and set_cell_ratio()

descendant
Refers to an attribute, property or setting set on a class which applies to that class and all its subclasses on which
the attribute, property or setting is unset.

dynamic size
dynamic sizing

A form of sizing wherein the image size is automatically computed at render-time.

This only works with automatic sizing.

See also:

fixed sizing and size

fixed size
fixed sizing

A form of sizing wherein the image size is set to a specific value which won’t change until it is re-set.

This works with both manual sizing and automatic sizing.

See also:

dynamic sizing, set_size(), width and height

horizontal alignment
The horizontal position of a primary render output within its padding width.

See also:

Alignment

horizontal allowance
The amount of columns to be left unused on the terminal screen.

1.7. Glossary 57

Term-Image, Release 0.6.1

manual size
manual sizing

A form of sizing wherein both the width and the height are specified to set the image size.

This form of sizing does not preserve image aspect ratio and can only be used with fixed sizing.

See also:

automatic sizing and set_size()

padding
Amount of lines and columns within which to fit a primary render output.

See also:

Padding

padding height
Amount of lines within which to fit a primary render output.

Excess lines on either or both sides of the render output (depending on the vertical alignment) will be filled with
spaces.

See also:

Padding

padding width
Amount of columns within which to fit a primary render output.

Excess columns on either or both sides of the render output (depending on the horizontal alignment) will be
filled with spaces.

See also:

Padding

pixel ratio
The aspect ratio with which one rendered pixel is drawn/displayed on the terminal screen.

For Graphics-based Render Styles, this is ideally 1.0.

For Text-based Render Styles, this is equvalent to the cell ratio multiplied by 2, since there are technically two
times more pixels along the vertical axis than along the horizontal axis in one character cell.

render
rendered
rendering

The process of encoding pixel data into a byte/character string (possibly including escape sequences to reproduce
colour and transparency).

This string is also called the primary render output and excludes padding.

render method
render methods

A unique implementation of a render style.

See also:

Render Methods

render style
render styles
style
styles

A specific technique for rendering or displaying pixel data (including images) in a terminal emulator.

58 Chapter 1. Contents

Term-Image, Release 0.6.1

A render style (or simply style) is implemented by a class, often refered to as a render style class (or simply style
class).

See also:

Render Styles

rendered height
The amount of lines that’ll be occupied by a primary render output when drawn (written) onto a terminal
screen.

rendered size
The amount of space (columns and lines) that’ll be occupied by a primary render output when drawn (written)
onto a terminal screen.

rendered width
The amount of columns that’ll be occupied by a primary render output when drawn (written) onto a terminal
screen.

scale
The fraction/ratio of an image’s size that’ll actually be used to render it.

See also:

Image scale

source
The resource from which an image instance is initialized.

See also:

source and source_type

terminal height
The amount of lines on a terminal screen at a time i.e without scrolling.

terminal size
The amount of columns and lines on a terminal screen at a time i.e without scrolling.

terminal width
The amount of columns on a terminal screen at a time.

vertical alignment
The vertical position of a primary render output within its padding height.

See also:

Alignment

vertical allowance
The amount of lines to be left unused on the terminal screen.

1.7. Glossary 59

Term-Image, Release 0.6.1

60 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

61

Term-Image, Release 0.6.1

62 Chapter 2. Indices and Tables

PYTHON MODULE INDEX

t
term_image, 20
term_image.exceptions, 51
term_image.image, 23
term_image.utils, 53
term_image.widget, 48

63

Term-Image, Release 0.6.1

64 Python Module Index

INDEX

A
active terminal, 56
alignment, 56
allowance, 56
alpha threshold, 56
animated, 57
AUTO (term_image.image.Size attribute), 24
auto_image_class() (in module term_image.image),

23
AutoCellRatio (class in term_image), 20
AutoImage() (in module term_image.image), 23
automatic size, 57
automatic sizing, 57
available height, 57
available size, 57
available width, 57

B
BaseImage (class in term_image.image), 26
BlockImage (class in term_image.image), 36
BlockImageError, 52

C
cell ratio, 57
clear() (term_image.image.ITerm2Image class

method), 42
clear() (term_image.image.KittyImage class method),

45
clear() (term_image.widget.UrwidImage method), 49
clear_all() (term_image.widget.UrwidImage static

method), 49
close() (term_image.image.BaseImage method), 31
close() (term_image.image.ImageIterator method), 47
closed (term_image.image.BaseImage property), 28

D
DEFAULT_QUERY_TIMEOUT (in module term_image), 20
descendant, 57
disable_queries() (in module term_image), 21
disable_win_size_swap() (in module term_image),

21
draw() (term_image.image.BaseImage method), 31

draw_screen() (term_image.widget.UrwidImageScreen
method), 50

DYNAMIC (term_image.AutoCellRatio attribute), 20
dynamic size, 57
dynamic sizing, 57

E
enable_queries() (in module term_image), 21
enable_win_size_swap() (in module term_image), 21

F
FILE_PATH (term_image.image.ImageSource attribute),

24
FIT (term_image.image.Size attribute), 24
FIT_TO_WIDTH (term_image.image.Size attribute), 24
FIXED (term_image.AutoCellRatio attribute), 20
fixed size, 57
fixed sizing, 57
flush() (term_image.widget.UrwidImageScreen

method), 50
forced_support (term_image.image.BaseImage prop-

erty), 28
frame_duration (term_image.image.BaseImage prop-

erty), 28
from_file() (in module term_image.image), 23
from_file() (term_image.image.BaseImage class

method), 32
from_url() (in module term_image.image), 23
from_url() (term_image.image.BaseImage class

method), 33

G
get_available_raw_input()

(term_image.widget.UrwidImageScreen
method), 51

get_cell_ratio() (in module term_image), 22
get_terminal_name_version() (in module

term_image.utils), 53
get_terminal_size() (in module term_image.utils),

53
GraphicsImage (class in term_image.image), 36
GraphicsImageError, 52

65

Term-Image, Release 0.6.1

H
height (term_image.image.BaseImage property), 28
horizontal alignment, 57
horizontal allowance, 57

I
image (term_image.widget.UrwidImage property), 49
ImageIterator (class in term_image.image), 46
ImageMeta (class in term_image.image), 25
ImageSource (class in term_image.image), 24
InvalidSizeError, 52
is_animated (term_image.image.BaseImage property),

29
is_supported (term_image.AutoCellRatio attribute), 20
is_supported() (term_image.image.BaseImage class

method), 33
ITerm2Image (class in term_image.image), 37
ITerm2ImageError, 52

J
jpeg_quality (term_image.image.ITerm2Image prop-

erty), 40

K
KittyImage (class in term_image.image), 42
KittyImageError, 52

L
lock_tty() (in module term_image.utils), 53
loop_no (term_image.image.ImageIterator property), 47

M
manual size, 58
manual sizing, 58
module

term_image, 20
term_image.exceptions, 51
term_image.image, 23
term_image.utils, 53
term_image.widget, 48

N
n_frames (term_image.image.BaseImage property), 29
native_anim_max_bytes

(term_image.image.ITerm2Image property), 41

O
ORIGINAL (term_image.image.Size attribute), 24
original_size (term_image.image.BaseImage prop-

erty), 29

P
padding, 58

padding height, 58
padding width, 58
PIL_IMAGE (term_image.image.ImageSource attribute),

24
pixel ratio, 58

R
read_from_file (term_image.image.ITerm2Image

property), 41
read_tty_all() (in module term_image.utils), 54
render, 58
render method, 58
render methods, 58
render style, 58
render styles, 58
rendered, 58
rendered height, 59
rendered size, 59
rendered width, 59
rendered_height (term_image.image.BaseImage prop-

erty), 29
rendered_size (term_image.image.BaseImage prop-

erty), 29
rendered_width (term_image.image.BaseImage prop-

erty), 29
rendering, 58

S
scale, 59
scale (term_image.image.BaseImage property), 29
scale_x (term_image.image.BaseImage property), 30
scale_y (term_image.image.BaseImage property), 30
seek() (term_image.image.BaseImage method), 34
seek() (term_image.image.ImageIterator method), 47
set_cell_ratio() (in module term_image), 22
set_error_placeholder()

(term_image.widget.UrwidImage class
method), 49

set_query_timeout() (in module term_image), 22
set_render_method() (term_image.image.BaseImage

class method), 34
set_size() (term_image.image.BaseImage method), 34
Size (class in term_image.image), 24
size (term_image.image.BaseImage property), 30
source, 59
source (term_image.image.BaseImage property), 30
source_type (term_image.image.BaseImage property),

30
style, 58
style (term_image.image.ImageMeta property), 25
StyleError, 52
styles, 58

66 Index

Term-Image, Release 0.6.1

T
tell() (term_image.image.BaseImage method), 35
term_image

module, 20
term_image.exceptions
module, 51

term_image.image
module, 23

term_image.utils
module, 53

term_image.widget
module, 48

TermImageError, 51
TermImageWarning, 51
terminal height, 59
terminal size, 59
terminal width, 59
TextImage (class in term_image.image), 36
TextImageError, 52

U
URL (term_image.image.ImageSource attribute), 24
URLNotFoundError, 51
UrwidImage (class in term_image.widget), 48
UrwidImageCanvas (class in term_image.widget), 49
UrwidImageError, 52
UrwidImageScreen (class in term_image.widget), 50

V
vertical alignment, 59
vertical allowance, 59

W
width (term_image.image.BaseImage property), 30
write() (term_image.widget.UrwidImageScreen

method), 51
write_tty() (in module term_image.utils), 54

Index 67

	Contents
	Getting Started
	Installation
	Requirements
	Steps
	Supported Terminal Emulators

	Tutorial
	Creating an Instance
	Rendering an Image
	Unformatted Rendering
	Formatted Rendering

	Drawing/Displaying an Image
	Image Size
	Image scale

	User Guide
	Concepts
	Render Styles
	Text-based Render Styles
	Graphics-based Render Styles
	Render Methods

	Auto Cell Ratio
	The Active Terminal
	Terminal Queries
	Features that require terminal queries

	Render Formatting
	Padding
	Alignment
	Transparency
	Render Format Specification

	API Reference
	Top-Level Definitions
	Constants
	Enumerations
	Functions

	image Module
	Functions
	Enumerations
	Image Classes
	Class Hierachy
	The Classes
	Context Management Protocol Support
	Iteration Support

	Other Classes

	widget Module
	exceptions Module
	utils Module

	Planned Features
	Known Issues
	FAQs
	Glossary

	Indices and Tables
	Python Module Index
	Index

