
term-image

AnonymouX47

Jul 13, 2022

CONTENTS:

1 Installation 1
1.1 Requirements . 1
1.2 Steps . 1
1.3 Supported Terminal Emulators . 1

2 Library Documentation 3
2.1 Tutorial . 3

2.1.1 Creating an instance . 4
2.1.2 Rendering an image . 4
2.1.3 Drawing/Displaying an image to/in the terminal . 8
2.1.4 Image size . 9
2.1.5 Image scale . 11

2.2 Reference . 13
2.2.1 Core Library Definitions . 13
2.2.2 Custom Exceptions . 21
2.2.3 Top-Level Functions . 21
2.2.4 Image Format Specification . 22

2.3 Known Issues . 23
2.4 Planned Features . 23

3 Image viewer 25
3.1 Text-based User Interface . 25

3.1.1 Demo . 25
3.1.2 UI Components . 26
3.1.3 Contexts . 27
3.1.4 Actions . 28

3.2 Configuration . 28
3.2.1 Config Options . 28
3.2.2 Key Config . 30

3.3 Image sources . 35
3.4 Modes . 35
3.5 Usage . 36
3.6 Notifications . 36
3.7 Logging . 36
3.8 Exit Codes . 37
3.9 Known Issues . 37
3.10 Planned Features . 37

4 FAQs 39

i

5 Glossary 41

6 Indices and tables 43

Python Module Index 45

Index 47

ii

CHAPTER

ONE

INSTALLATION

1.1 Requirements

• Operating System: Unix / Linux / MacOS X / Windows (partial support, see the FAQs)

• Python >= 3.7

• A terminal emulator with full Unicode support and ANSI 24-bit color support

– Plans are in place to support a wider variety of terminal emulators, whether not meeting or surpassing these
requirements (see Planned Features).

1.2 Steps

The latest stable version can be installed from PyPI using pip:

pip install term-image

The development version can be installed thus: Clone the repository, then navigate into the project directory in a
terminal and run:

pip install .

1.3 Supported Terminal Emulators

Some terminals emulators that have been tested to meet all major requirements are:

• libvte-based terminal emulators such as:

– Gnome Terminal

– Terminator

– Tilix

• Kitty

• Alacritty

• Windows Terminal

• Termux (on Android)

1

https://www.python.org/
https://pypi.python.org/pypi/term-image
https://github.com/AnonymouX47/term-image

term-image

Other terminals that only support 256 colors but meet other requirements include: - xterm, uxterm (256 colors)

Note: If you’ve tested term-image on any other terminal emulator that meets all requirements, please mention the
name in a new thread under this discussion.

Also, if you’re having an issue with terminal support, you may report or view information about it in the discussion
linked above.

See here for information about terminal colors and a list of potentially supported terminal emulators.

Note: Some terminal emulators support 24-bit color codes but have a 256-color pallete. This will limit color repro-
duction.

2 Chapter 1. Installation

https://github.com/AnonymouX47/term-image/discussions/4
https://github.com/termstandard/colors

CHAPTER

TWO

LIBRARY DOCUMENTATION

2.1 Tutorial

This is a basic introduction to using the library. Please refer to the Reference for detailed description of the features
and functionality provided by the library.

For this tutorial we’ll be using the image below:

The image has a resolution of 288x288 pixels.

Note: All the samples in this tutorial occured in a terminal window of 255 columns by 70 lines.

3

term-image

2.1.1 Creating an instance

If the file is stored on your local filesystem:

from term_image.image import TermImage

image = TermImage.from_file("python.png")

You can also use a URL if you don’t have the file stored locally:

from term_image.image import TermImage

image = TermImage.from_url("https://raw.githubusercontent.com/AnonymouX47/term-image/
→˓docs/source/resources/python.png")

The library can also be used with PIL images:

from PIL import Image
from term_image.image import TermImage

img = Image.open("python.png")
image = TermImage(img)

2.1.2 Rendering an image

Rendering an image is simply the process of converting it (per-frame for animated images) into text (a string).

Hint: To display the rendered output in the following steps, just print the output string with print().

There are two ways to render an image:

1. Unformatted

str(image)

Renders the image without padding/alignment and with transparency enabled

The result should look like:

4 Chapter 2. Library Documentation

term-image

2. Formatted

Note: To see the effect of alignment in the steps below, please scale the image down using:

image.scale = 0.75

This simply sets the x-axis and y-axis scales of the image to 0.75. We’ll see more about this later.

Below are examples of formatted rendering:

format(image, "|200.^70#ffffff")

Renders the image with:

• center horizontal alignment

• a padding width of 200 columns

• top vertical alignment

• a padding height of 70 lines

• transparent background replaced with a white (#ffffff) background

Note: If you get an error while trying the step above, saying something like “padding width larger than. . . ”, either:

• reduce the width (200) to something that’ll fit into your terminal window, or

• increase the size of the terminlal window

You might use your own terminal height instead of 70.

2.1. Tutorial 5

term-image

The result should look like:

f"{image:>._#.5}"

Renders the image with:

• right horizontal alignment

• automatic padding width (the current terminal width minus horizontal allowance)

• bottom vertical alignment

• automatic padding height (the current terminal height minus vertical allowance)

• transparent background with 0.5 alpha threshold

The result should look like:

6 Chapter 2. Library Documentation

term-image

"{:1.1#}".format(image)

Renders the image with:

• center horizontal alignment (default)

• no horizontal padding, since 1 must be less than or equal to the image width

• middle vertical alignment (default)

• no vertical padding, since 1 is less than or equal to the image height

• transparency disabled (uses the image’s default background color)

The result should look like:

2.1. Tutorial 7

term-image

You should also have a look at the complete Image Format Specification.

2.1.3 Drawing/Displaying an image to/in the terminal

There are two ways to draw an image to the terminal screen:

1. The draw() method

image.draw()

NOTE: TermImage.draw() has various parameters for alignment/padding, transparency and animation con-
trol.

2. Using print() with an image render output (i.e printing the rendered string)

print(image) # Uses str()

OR

print(f"{image:>200.^70#ffffff}") # Uses format()

Note:

• For animated images, only the former animates the output, the latter only draws the current frame (see
TermImage.seek() and TermImage.tell()).

• Also, the former performs size validation to see if the image will fit into the terminal, while the latter doesn’t.

Important: All the examples above use automatic sizing and default scale.

8 Chapter 2. Library Documentation

term-image

2.1.4 Image size

The size of an image is the unscaled dimension with which an image is rendered.
The image size can be retrieved via the size, width and height properties.

The size of an image can be in either of two states:

1. Set

The size is said the be set when the image has a fixed size.
In this state, the size property is a tuple of integers, the width and height properties are integers.

2. Unset

The size is said to be unset when the image doesn’t have a fixed size.
In this case, the size with which the image is rendered is automatically calculated (based on the current
term:`terminal size) whenever the image is to be rendered.
In this state, the size, width and height properties are None.

The size of an image can be set when creating the instance by passing valid values to either the width or the height
keyword-only parameter.
For whichever axis is given, the other axis is calculated proportionally.

Note:

1. The arguments can only be given by keyword.

2. If neither is given, the size is unset.

3. All methods of instantiation accept these arguments.

For example:

>>> image = Termimage.from_file("python.png") # Unset
>>> image.size is None
True
>>> image = TermImage.from_file("python.png", width=60) # width is given
>>> image.size
(60, 60)
>>> image.height
60
>>> image = TermImage.from_file("python.png", height=56) # height is given
>>> image.size
(56, 56)
>>> image.width
56

No size validation is performed i.e the resulting size might not fit into the terminal window

2.1. Tutorial 9

term-image

>>> image = TermImage.from_file("python.png", height=136) # (terminal_height - 2) * 2;␣
→˓Will fit, OK
>>> image.size
(136, 136)
>>> image = TermImage.from_file("python.png", height=1000) # Will not fit, also OK
>>> image.size
(1000, 1000)

An exception is raised when both width and height are given.

>>> image = TermImage.from_file("python.png", width=100, height=100)
Traceback (most recent call last):
.
.
.

ValueError: Cannot specify both width and height

The width and height properties are used to set the size of an image after instantiation.

>>> image = Termimage.from_file("python.png") # Unset
>>> image.size is None
True
>>> image.width = 56
>>> image.size
(56, 56)
>>> image.height
56
>>> image.height = 136
>>> image.size
(136, 136)
>>> image.width
136
>>> image.width = 200 # Even though the terminal can't contain the resulting height, the␣
→˓size is still set

Setting width or height to None sets the size to that automatically calculated based on the current terminal size.

>>> image = Termimage.from_file("python.png") # Unset
>>> image.size is None
True
>>> image.width = None
>>> image.size
(136, 136)
>>> image.width = 56
>>> image.size
(56, 56)
>>> image.height = None
>>> image.size
(136, 136)

Note: An exception is raised if the terminal size is too small to calculate a size.

The size property can only be set to one value, None and doing this unsets the image size.

10 Chapter 2. Library Documentation

term-image

>>> image = Termimage.from_file("python.png", width=100)
>>> image.size
(100, 100)
>>> image.size = None
>>> image.size is image.width is image.height is None
True

Important: 1. The currently set font ratio is also taken into consideration when setting sizes. 3. There is a default
2-line vertical allowance, to allow for shell prompts or the likes.

Therefore, by default, only terminal_height - 2 lines are available i.e the maximum height is (terminal_height
- 2) * 2.

Hint: See TermImage.set_size() for extended sizing control.

2.1.5 Image scale

The scale of an image is the fraction of the size that’ll actually be used to render the image.
A valid scale value is a float in the range 0 < x <= 1 i.e greater than zero and less than or equal to one.

The image scale can be retrieved via the properties scale, scale_x and scale_y.

The scale can be set at instantiation by passing a value to the scale keyword-only paramter.

>>> image = Termimage.from_file("python.png", scale=(0.75, 0.6))
>>> image.scale
>>> (0.75, 0.6)

The rendered result (using image.draw()) should look like:

2.1. Tutorial 11

term-image

If the scale argument is ommited, the default scale (1.0, 1.0) is used.

>>> image = Termimage.from_file("python.png")
>>> image.scale
>>> (1.0, 1.0)

The rendered result (using image.draw()) should look like:

12 Chapter 2. Library Documentation

term-image

The properties scale, scale_x and scale_y are used to set the scale of an image after instantiation.

scale accepts a tuple of two scale values or a single scale value.
scale_x and scale_y each accept a single scale value.

>>> image = Termimage.from_file("python.png")
>>> image.scale = (.3, .56756)
>>> image.scale
(0.3, 0.56756)
>>> image.scale = .5
>>> image.scale
(0.5, 0.5)
>>> image.scale_x = .75
>>> image.scale
(0.75, 0.5)
>>> image.scale_y = 1.
>>> image.scale
(0.75, 1.0)

Finally, to explore more of the library’s features and functionality, check out the Reference section.

2.2 Reference

2.2.1 Core Library Definitions

The term_image.image module defines the following:

Note: It’s allowed to set properties for animated images on non-animated ones, the values are simply ignored.

class term_image.image.TermImage(image, *, width=None, height=None, scale=(1.0, 1.0))
Bases: object

Text-printable image

Parameters

• image (Image.Image) – Source image.

• width (Optional[int]) – Horizontal dimension of the image, in columns.

• height (Optional[int]) – Vertical dimension of the image, in lines.

• scale (Tuple[float, float]) – The fraction of the size on respective axes, to render the
image with.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument has an unexpected/invalid value.

Return type None

2.2. Reference 13

term-image

Propagates exceptions raised by set_size(), if width or height is given.

Note:

• width or height is the exact number of columns or lines that’ll be used to draw the image (assuming the
scale equal 1), regardless of the currently set font ratio.

• If neither is given or both are None, the size is automatically determined when the image is to be rendered,
such that it optimally fits into the terminal.

• The image size is multiplied by the scale on respective axes before the image is rendered.

property closed
Instance finalization status

property frame_duration
Duration (in seconds) of a single frame for animated images

Setting this on non-animated images is simply ignored, no exception is raised.

property height
The unscaled height of the image.

None when the image size is unset.

Settable values:

• None: Sets the image size to an automatically calculated one, based on the current terminal size.

• A positive int: Sets the image height to the given value and the width proportionally.

property is_animated
True if the image is animated. Otherwise, False.

property original_size
Size of the source image (in pixels)

property n_frames: int
The number of frames in the image

property rendered_height
The scaled height of the image.

Also the exact number of lines that the drawn image will occupy in a terminal.

property rendered_size
The scaled size of the image.

Also the exact number of columns and lines (respectively) that the drawn image will occupy in a terminal.

property rendered_width
The scaled width of the image.

Also the exact number of columns that the drawn image will occupy in a terminal.

property scale
Image scale

Settable values are:

• A scale value; sets both axes.

• A tuple of two scale values; sets (x, y) respectively.

A scale value is a float in the range 0.0 < value <= 1.0.

14 Chapter 2. Library Documentation

term-image

property scale_x
Horizontal scale

A scale value is a float in the range 0.0 < x <= 1.0.

property scale_y
Vertical scale

A scale value is a float in the range 0.0 < y <= 1.0.

property size
The unscaled size of the image.

None when the image size is unset.

Setting this to None unsets the image size (so that it’s automatically calculated whenever the image is
rendered) and resets the recognized advanced sizing options to their defaults.

This is multiplied by the scale on respective axes before the image is rendered.

property source
The source from which the instance was initialized

Can be a PIL image, file path or URL.

property width
The unscaled width of the image.

None when the image size is unset.

Settable values:

• None: Sets the image size to an automatically calculated one, based on the current terminal size.

• A positive int: Sets the image width to the given value and the height proportionally.

close()
Finalizes the instance and releases external resources.

• In most cases, it’s not neccesary to explicity call this method, as it’s automatically called when the
instance is garbage-collected.

• This method can be safely called mutiple times.

• If the instance was initialized with a PIL image, the PIL image is never finalized.

Return type None

draw(h_align=None, pad_width=None, v_align=None, pad_height=None, alpha=0.1568627450980392, *,
scroll=False, animate=True, repeat=- 1, cached=100, check_size=True)

Draws/Displays an image in the terminal.

Parameters

• h_align (Optional[str]) – Horizontal alignment (“left” / “<”, “center” / “|” or “right”
/ “>”). Default: center.

• pad_width (Optional[int]) – Number of columns within which to align the image.

– Excess columns are filled with spaces.

– Must not be greater than the available terminal width.

– Default: terminal width, minus horizontal allowance.

2.2. Reference 15

term-image

• v_align (Optional[str]) – Vertical alignment (“top”/”^”, “middle”/”-” or “bot-
tom”/”_”). Default: middle.

• pad_height (Optional[int]) – Number of lines within which to align the image.

– Excess lines are filled with spaces.

– Must not be greater than the available terminal height, for animations.

– Default: terminal height, minus vertical allowance.

• alpha (Optional[float]) – Transparency setting.

– If None, transparency is disabled (uses the image’s default background color).

– If a float (0.0 <= x < 1.0), specifies the alpha ratio above which pixels are taken as
opaque.

– If a string, specifies a hex color with which transparent background should be replaced.

• scroll (bool) – Only applies to non-animations. If True:

– and the image size is set, allows the image’s rendered height to be greater than the avail-
able terminal height.

– and the image size is unset, the image is drawn to fit the terminal width.

• animate (bool) – If False, disable animation i.e draw only the current frame of an ani-
mated image.

• repeat (int) – The number of times to go over all frames of an animated image. A
negative value implies infinite repetition.

• cached (Union[bool, int]) – Determines if rendered frames of an animated image
will be cached (for speed up of subsequent renders of the same frame) or not.

– If bool, it directly sets if the frames will be cached or not.

– If int, caching is enabled only if the framecount of the image is less than or equal to the
given number.

• check_size (bool) – If False, does not perform size validation for non-animations.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid value.

• ValueError – Image size or scale too small.

• term_image.exceptions.InvalidSize – The image’s rendered size can not fit into the
available terminal size.

Return type None

• If set_size() was directly used to set the image size, the values of the fit_to_width, h_allow and
v_allow arguments (when set_size()was called) are taken into consideration during size validation,
with fit_to_width applying to only non-animations.

• If the size was set via another means or the size is unset, the default values of those parameters are
used.

• If the image size was set with the fit_to_width parameter of set_size() set to True, then setting
scroll is unnecessary.

16 Chapter 2. Library Documentation

term-image

• animate, repeat and cached apply to animated images only. They are simply ignored for non-animated
images.

• For animations (i.e animated images with animate set to True):

– scroll is ignored.

– Image size and padding height are always validated, if set or given.

• Animations, by default, are infinitely looped and can be terminated with Ctrl-C (SIGINT), raising
KeyboardInterrupt.

classmethod from_file(filepath, **kwargs)
Creates a TermImage instance from an image file.

Parameters

• filepath (str) – Relative/Absolute path to an image file.

• kwargs (Union[None, int, Tuple[float, float]]) – Same keyword arguments as
the class constructor.

Returns A new TermImage instance.

Raises

• TypeError – filepath is not a string.

• FileNotFoundError – The given path does not exist.

• IsADirectoryError – Propagated from from PIL.Image.open().

• UnidentifiedImageError – Propagated from from PIL.Image.open().

Return type term_image.image.TermImage

Also Propagates exceptions raised or propagated by the class constructor.

classmethod from_url(url, **kwargs)
Creates a TermImage instance from an image URL.

Parameters

• url (str) – URL of an image file.

• kwargs (Union[None, int, Tuple[float, float]]) – Same keyword arguments as
the class constructor.

Returns A new TermImage instance.

Raises

• TypeError – url is not a string.

• ValueError – The URL is invalid.

• term_image.exceptions.URLNotFoundError – The URL does not exist.

• PIL.UnidentifiedImageError – Propagated from PIL.Image.open().

Return type term_image.image.TermImage

Also propagates connection-related exceptions from requests.get() and exceptions raised or propagated
by the class constructor.

Note: This method creates a temporary image file, but only after a successful initialization.

2.2. Reference 17

term-image

Proper clean-up is guaranteed except maybe in very rare cases.

To ensure 100% guarantee of clean-up, use the object as a context manager.

seek(pos)
Changes current image frame.

Parameters pos (int) – New frame number.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument has an unexpected/invalid value but of an appropriate type.

Return type None

Frame numbers start from 0 (zero).

set_size(width=None, height=None, h_allow=0, v_allow=2, *, maxsize=None, fit_to_width=False,
fit_to_height=False)

Sets the image size with extended control.

Parameters

• width (Optional[int]) – Horizontal dimension of the image, in columns.

• height (Optional[int]) – Vertical dimension of the image, in lines.

• h_allow (int) – Horizontal allowance i.e minimum number of columns to leave unused.

• v_allow (int) – Vertical allowance i.e minimum number of lines to leave unused.

• maxsize (Optional[Tuple[int, int]]) – If given, as (columns, lines), it’s used
instead of the terminal size.

• fit_to_width (bool) – Only used with automatic sizing. See description below.

• fit_to_height (bool) – Only used with automatic sizing. See description below.

Raises

• TypeError – An argument is of an inappropriate type.

• ValueError – An argument is of an appropriate type but has an unexpected/invalid value.

• ValueError – Both width and height are specified.

• ValueError – fit_to_width or fit_to_height is Truewhen width, height or maxsize is given.

• ValueError – The available size is too small for automatic sizing.

• term_image.exceptions.InvalidSize – maxsize is given and the resulting size will
not fit into it.

Return type None

If neither width nor height is given or anyone given is None, automatic sizing applies. In such a case, if:

• both fit_to_width and fit_to_height are False, the size is set to fit within the available terminal size
(or maxsize, if given).

• fit_to_width is True, the size is set such that the rendered width is exactly the available terminal width
(assuming the horizontal scale equals 1), regardless of the font ratio.

• fit_to_height is True, the size is set such that the rendered height is exactly the available terminal
height (assuming the vertical scale equals 1), regardless of the font ratio.

18 Chapter 2. Library Documentation

term-image

Important:

1. fit_to_width and fit_to_height are mutually exclusive. Only one can be True at a time.

2. Neither fit_to_width nor fit_to_height may be True when width, height or maxsize is given.

3. Be careful when setting fit_to_height to True as it might result in the image’s rendered width being
larger than the terminal width (or maxsize[0]) because draw() will (by default) raise term_image.
exceptions.InvalidSize if such is the case.

Vertical allowance does not apply when fit_to_width is True.
horizontal allowance does not apply when fit_to_height is True.

Allowances are ignored when maxsize is given.

fit_to_width might be set to True to set the image size for vertically-oriented images (i.e images with height
> width) such that the drawn image spans more columns but the terminal window has to be scrolled to view
the entire image.

Image formatting and all size validation recognize and respect the values of the fit_to_width, h_allow and
v_allow parameters, until the size is re-set or unset.

fit_to_height is only provided for completeness, it should probably be used only when the image will not
be drawn to the current terminal. The value of this parameter is not recognized by any other method or
operation.

Note: The size is checked to fit in only when maxsize is given along with width or height because draw()
is generally not the means of drawing such an image and all rendering methods don’t perform any sort of
size validation.

If the validation is not desired, specify only one of maxsize and width or height, not both.

tell()
Returns the current image frame number.

Return type int

class term_image.image.ImageIterator(image, repeat=- 1, format='', cached=100)
Bases: object

Effeciently iterate over rendered frames of an animated image

Parameters

• image (TermImage) – Animated image.

• repeat (int) – The number of times to go over the entire image. A negative value implies
infinite repetition.

• format (str) – The format specification to be used to format the rendered frames (default:
auto).

• cached (Union[bool, int]) – Determines if the rendered frames will be cached (for
speed up of subsequent renders) or not.

– If bool, it directly sets if the frames will be cached or not.

2.2. Reference 19

term-image

– If int, caching is enabled only if the framecount of the image is less than or equal to the
given number.

Return type None

• If repeat equals 1, caching is disabled.

• The iterator has immediate response to changes in the image size and scale.

• If the image size is unset, it’s automatically calculated per frame.

• The current frame number reflects on the underlying image during iteration.

• After the iterator is exhausted, the underlying image is set to frame 0.

close()
Closes the iterator and releases resources used.

Does not reset the frame number of the underlying image.

Note: This methods is automatically called when the iterator is exhausted or garbage-collected.

Return type None

Context Management Protocol Support

TermImage instances are context managers i.e they can be used with the with statement as in:

with TermImage.from_url(url) as image:
...

Using an instance as a context manager more surely guarantees object finalization (i.e clean-up/release of resources),
especially for instances with URL sources (see TermImage.from_url()).

Iteration Support

Animated TermImage instances are iterable i.e they can be used with the for statement (and other means of iteration
such as unpacking) as in:

for frame in TermImage.from_file("animated.gif"):
...

Subsequent frames of the image are yielded on subsequent iterations.

Note:

• iter(anim_image) returns an ImageIterator instance with a repeat count of 1, hence caching is disabled.

• The frames are unformatted and transparency is enabled i.e as returned by str(image).

For more extensive or custom iteration, use ImageIterator directly.

20 Chapter 2. Library Documentation

term-image

2.2.2 Custom Exceptions

The term_image.exceptions module defines the following:

exception term_image.exceptions.TermImageException
Bases: Exception

Package exception baseclass

exception term_image.exceptions.URLNotFoundError
Bases: FileNotFoundError, term_image.exceptions.TermImageException

Raised for 404 errors

exception term_image.exceptions.InvalidSize
Bases: ValueError, term_image.exceptions.TermImageException

Raised for invalid image sizes

2.2.3 Top-Level Functions

term_image.get_font_ratio()
Returns the set libray-wide font ratio.

Return type float

term_image.set_font_ratio(ratio)
Sets the library-wide font ratio.

Parameters

• ratio (float) – The aspect ratio (i.e width / height) of a character cell in the

• emulator. (terminal) –

Return type None

This value is taken into consideration when setting image sizes in order for images drawn to the terminal to have
a proper perceived scale.

If you can’t determine this value from your terminal’s configuration, you might have to try different values till
you get a good fit. Normally, this value should be between 0 and 1, but not too close to either.

Important: Changing the font ratio does not automatically affect any image whose size has already been set.
For a change in font ratio to have any effect, it’s size has to be set again.

2.2. Reference 21

term-image

2.2.4 Image Format Specification

[h_align] [width] [. [v_align] [height]] [# [threshold | bgcolor]]

Note:

• The spaces are only for clarity and not included in the syntax.

• Fields within [] are optional.

• | implies mutual exclusivity.

• If the . is present, then at least one of v_align and height must be present.

• width and height are in units of columns and lines repectively.

• If the padding width or padding height is less than or equal to the image’s rendered width or rendered height
respectively, the padding has no effect.

• h_align: This can be one of:

– <→ left

– |→ center

– >→ right

– absent → center

• width: Integer padding width (default: terminal width minus horizontal allowance)

• v_align: This can be one of:

– ^→ top

– -→ middle

– _→ bottom

– absent → middle

• height: Integer padding height (default: terminal height minus vertical allowance)

• #: Transparency setting:

– If absent, transparency is enabled.

– threshold: Alpha ratio above which pixels are taken as opaque e.g .0, .325043, .99999. The value
must be in the range 0.0 <= threshold < 1.0.

– bgcolor: Hex color with which transparent background should be replaced e.g ffffff, 7faa52.

– If neither threshold nor bgcolor is present, but # is present, transparency is disabled (uses the image’s
default background color).

See Formatted rendering for examples.

22 Chapter 2. Library Documentation

term-image

2.3 Known Issues

1. Drawing of images and animations doesn’t work completely well with cmd and powershell (tested in Windows
Terminal).

• Description: Some lines of the image seem to extend beyond the number of columns that it should normally
occupy by about one or two columns. This behaviour causes animations to go bizzare.

• Comment: First of all, the issue is inherent to these shells and neither a fault of this library nor the Windows
Terminal, as drawing images and animations works properly with WSL within Windows Terminal.

• Solution: A workaround is to leave some horizontal allowance of at least two columns to ensure the
image never reaches the right edge of the terminal. This can be achieved in the library by using the h_allow
parameter of TermImage.set_size().

2.4 Planned Features

• Performance improvements

• Support for terminal graphics protocols (See #23)

• More text-based render styles

– Greyscale rendering (Good for 256-color terminals)

– ASCII-based rendering (Support for terminals without unicode or 24-bit color support)

– Black and white rendering

• Support for open file objects and Pathlike objects

• Determination of frame duration per frame during animations and image iteration

• Image source type property

• Framing formatting option

• Jumping to a specified frame during image iteration

• Image zoom and pan functionalities

• Addition of urwid widgets for displaying images

• etc. . .

2.3. Known Issues 23

https://github.com/AnonymouX47/term-image/issues/23

term-image

24 Chapter 2. Library Documentation

CHAPTER

THREE

IMAGE VIEWER

3.1 Text-based User Interface

The TUI is developed using urwid.

3.1.1 Demo

See a demo video (recorded at normal speed and not sped up).

25

https://urwid.org
https://user-images.githubusercontent.com/61663146/163809903-e8fb254b-a0aa-4d0d-9fc9-dd676c10b735.mp4

term-image

3.1.2 UI Components

The UI consists of various areas which are each composed using one or more widgets.
The components of the UI might change depending on the current context and some actions.

The following are the key components that make up the UI.

• Banner:

– At the top of the UI.

– Fixed height of 4 lines.

– Contains the project title with a surrounding color fill and a line-box decoration.

– Hidden in full image views.

• Viewer:

– Immediately below the title banner.

– Consists of two sub-components (described below) arranged horizontally: * Menu * View

• Menu:

– Sub-component of the viewer to the left.

– Fixed width of 20 columns.

– Contains a list of image and directory entries which can be scrolled through.

– Used to scroll through images in a directory and navigate back and forth through directories, among other
actions.

• View:

– Sub-component of the viewer to the right.

– Images are displayed in here.

– The content can be one of these two, depending on the type of item currently selected in the menu: * An
image: When the item selected in the menu is an image. * An image grid: When the item selected in the
menu is a directory.

– The view component can also be used to scroll through images.

• Notification Bar:

– Immediately above the Action/Key Bar.

– Notifications about various events are displayed here.

– Hidden in full image views.

– Hidden in all views, in QUIET mode (--quiet).

• Action/Key Bar:

– Contains a list of actions in the current context.

– Each action has the symbol of the assigned key beside its name.

– If the actions are too much to be listed on one line, the bar can be expanded/collapsed using the key indicated
at the far right.

• Overlays:

26 Chapter 3. Image viewer

term-image

– These are used for various purposes such as help menu, confirmations, etc.

– They are shown only when certain actions are triggered.

• Info Bar:

– Used for debugging.

– This is a 1-line bar immediately above the action/key bar.

– Only shows (in all views) when the --debug option is specified.

Full/Maximized image views consist of only the view and action/key bar components.

3.1.3 Contexts

A context is simply a set of actions.

The active context might change due to one of these:

• Triggering certain actions.

• Change of viewer sub-component (i.e menu or view) in focus.

• Type of menu entry selected.

• An overlay is shown.

The active context determines which actions are available and displayed in the action/key bar at the bottom of the UI.

The following are the contexts available:

• global: The actions in this context are available when any other context is active, with a few exceptions.

• menu: This context is active when the menu UI component is in focus and non-empty.

• image: This context is active if the view UI component is in focus and was switched to (from the menu) while
an image entry was selected.

• image-grid: This context is active if the view UI component is in focus and was switched to (from the menu)
while a directory entry was selected.

• full-image: This context is active when an image entry is maximized from the image context (using the
Maximize action) or from the menu context using the Open action.

• full-grid-image: This context is active when an image grid cell is maximized from the image-grid context
(using the Open action).

• confirmation: This context is active only when specific actions that require confirmation are triggered e.g the
Delete action in some contexts.

• overlay: This context is active only when an overlay UI component (e.g the help menu) is shown.

3.1. Text-based User Interface 27

term-image

3.1.4 Actions

An action is a single entry in a context, it represents a functionality available in that context.
An action has the following defining properties:

• name: The name of the action.

• key: The key/combination used to trigger the action.

• symbol: A string used to represent the key.

• description: A brief description of what the action does.

• visibility: Determines if the action is displayed in the action/key bar or not.

• state: Determines if the action is enabled or not. * If an action is disabled, pressing its key will trigger the
terminal bell.

Note: All contexts and their actions (with default properties) are defined in _context_keys in the term_image.
config sub-module.

3.2 Configuration

The configuration is divided into the following categories:

• Options

• Keys

The configuration is stored in the JSON format in a file located at ~/.term_image/config.json.

3.2.1 Config Options

These are fields whose values control various behaviours of the viewer.
Any option with a “[*]” after its description will be used only when the corresponding command-line option is either
not specified or has an invalid value.

They are as follows:

anim cache The maximum frame count of an image for which frames will be cached during animation. [*]

• Type: integer

• Valid values: x > 0

cell width The initial width of (no of columns for) grid cells, in the TUI.

• Type: integer

• Valid values: 30 <= x <= 50 and x is even

checkers Maximum number of subprocesses for checking directory sources.

• Type: null or integer

• Valid values: null or x >= 0

28 Chapter 3. Image viewer

term-image

If null, the number of subprocesses is automatically determined based on the amount of logical processors
available. CPU affinity is also taken into account on supported platforms.
If 0 (zero), directory sources are checked within the main process.

font ratio The font ratio. [*]

• Type: float

• Valid values: x > 0.0

getters Number of threads for downloading images from URL sources.

• Type: integer

• Valid values: x > 0

grid renderers Number of subprocesses for rendering grid cells.

• Type: integer

• Valid values: x > 0

If 0 (zero), grid cells are rendered by a thread of the main process.

log file The file to which logs are written. [*]

• Type: string

• Valid values: An absolute path to a writable file.

If the file doesn’t exist the parent directory must be writable, so the file can created.
If the file exists, it is appended to, not overwritten.
See Logging.

max notifications The maximum number of TUI notifications that can show at a time.

• Type: integer

• Valid values: x >= 0

Adjusts the height of the notification bar.

max pixels The maximum amount of pixels in images to be displayed in the TUI. [*]

• Type: integer

• Valid values: x > 0

Any image having more pixels than the specified value will be:

• skipped, in CLI mode, if --max-pixels-cli is specified.

• replaced, in TUI mode, with a placeholder when displayed but can still be forced to display or viewed
externally.

3.2. Configuration 29

term-image

Note that increasing this should not have any effect on general performance (i.e navigation, etc) but the larger an
image is, the more the time and memory it’ll take to render it. Thus, a large image might delay the rendering of
other images to be rendered immediately after it.

Attention: The version field is not a config option, it’s used for config file updates and should not be tampered
with.

3.2.2 Key Config

The key assigned to every action can be modified in the config file.

The "keys" field in the configuration holds a mapping containing fields each mapping a context to a mapping of actions
to their properties.

The format of the "keys" mapping is thus:

{
"<context>": {

"<action>": [
"<key>",
"<symbol>"

],

...
},

...
}

‘. . . ’ means continuous repitition of the format occurs.

action is the name of the action. It should not be modified.
Any or both of key and symbol can be changed. Both must be valid Python strings, hence Unicode characters are
supported.

Hint: If using a Unicode character that occupies multiple columns in symbol, then add spaces after it as required to
cover-up for the extra columns.

Note: The navigation field is not actually a context, instead it’s the universal navigation controls configuration from
which navigation actions in actual contexts are updated.

Attention:

1. Keys used in navigation or global contexts cannot be used in any other context.

2. All keys in a context must be unique.

30 Chapter 3. Image viewer

term-image

3. If a key is invalid or already used, the default is tried as a fallback but if that fails (because it’s already used),
the session is terminated.

Here is a config with Vim-style (majorly navigation) keybindings.
Remember to rename the file to config.json.

Below is a list of all valid values for key:

" "
"!"
"""
"#"
"$"
"%"
"&"
"'"
"("
")"
"*"
"+"
","
"-"
"."
"/"
"0"
"1"
"2"
"3"
"4"
"5"
"6"
"7"
"8"
"9"
":"
";"
"<"
"="
">"
"?"
"@"
"["
"\\"
"]"
"^"
"_"
"`"
"A"
"a"
"ctrl a"

(continues on next page)

3.2. Configuration 31

https://raw.githubusercontent.com/AnonymouX47/term-image/main/vim-style_config.json

term-image

(continued from previous page)

"B"
"b"
"ctrl b"
"C"
"c"
"D"
"d"
"ctrl d"
"E"
"e"
"ctrl e"
"F"
"f"
"ctrl f"
"G"
"g"
"ctrl g"
"H"
"h"
"ctrl h"
"I"
"i"
"ctrl i"
"J"
"j"
"ctrl j"
"K"
"k"
"ctrl k"
"L"
"l"
"ctrl l"
"M"
"m"
"ctrl m"
"N"
"n"
"ctrl n"
"O"
"o"
"ctrl o"
"P"
"p"
"ctrl p"
"Q"
"q"
"ctrl q"
"R"
"r"
"ctrl r"
"S"
"s"

(continues on next page)

32 Chapter 3. Image viewer

term-image

(continued from previous page)

"ctrl s"
"T"
"t"
"ctrl t"
"U"
"u"
"ctrl u"
"V"
"v"
"ctrl v"
"W"
"w"
"ctrl w"
"X"
"x"
"ctrl x"
"Y"
"y"
"ctrl y"
"Z"
"z"
"{"
"|"
"}"
"~"
"f1"
"ctrl f1"
"shift f1"
"shift ctrl f1"
"f2"
"ctrl f2"
"shift f2"
"shift ctrl f2"
"f3"
"ctrl f3"
"shift f3"
"shift ctrl f3"
"f4"
"ctrl f4"
"shift f4"
"shift ctrl f4"
"f5"
"ctrl f5"
"shift f5"
"shift ctrl f5"
"f6"
"ctrl f6"
"shift f6"
"shift ctrl f6"
"f7"
"ctrl f7"
"shift f7"

(continues on next page)

3.2. Configuration 33

term-image

(continued from previous page)

"shift ctrl f7"
"f8"
"ctrl f8"
"shift f8"
"shift ctrl f8"
"f9"
"ctrl f9"
"shift f9"
"shift ctrl f9"
"up"
"ctrl up"
"shift up"
"shift ctrl up"
"end"
"ctrl end"
"shift end"
"shift ctrl end"
"esc"
"f10"
"ctrl f10"
"shift f10"
"shift ctrl f10"
"f11"
"ctrl f11"
"shift f11"
"shift ctrl f11"
"f12"
"ctrl f12"
"shift f12"
"shift ctrl f12"
"tab"
"down"
"ctrl down"
"shift down"
"shift ctrl down"
"home"
"ctrl home"
"shift home"
"shift ctrl home"
"left"
"ctrl left"
"shift left"
"shift ctrl left"
"enter"
"right"
"ctrl right"
"shift right"
"shift ctrl right"
"delete"
"ctrl delete"
"shift delete"
"shift ctrl delete"

(continues on next page)

34 Chapter 3. Image viewer

term-image

(continued from previous page)

"insert"
"backspace"
"page up"
"ctrl page up"
"page down"
"ctrl page down"

Any values other than these will be flagged as invalid and the default will be used instead (if possible) for that session.

The package comes with a standalone in-terminal image viewer based on the library.

The image viewer is started from the command line using either the term-image command (only works if the Python
scripts directory is on PATH) or python -m term_image.
*Take note of the differences.

3.3 Image sources

The viewer accepts the following kinds of sources:

• An image file on a local filesystem.

• A directory on a local filesystem.

• An Image URL.

Any other thing given as a source is simply reported as invalid.

3.4 Modes

The viewer can be used in two modes:

1. CLI mode

In this mode, images are directly printed to standard output.
This mode is used whenever there is only a single image source or when the --cli option is specified.

2. TUI mode

In this mode, a Terminal/Text-based User Interface is launched, within which images and directories can be
browsed and viewed in different ways.
This mode is used whenever there are multiple image sources or at least one directory source, or when the
--tui option is specified.

3.3. Image sources 35

term-image

3.5 Usage

Run term-image with the --help option to see the usage info and help text.
All arguments and options are described there.

Note that some options are only applicable to a specific mode. If used with the other mode, they’re simply ignored.

Some options have a [N] (where N is a number) behind their description, it indicates that the option has a footnote
attached.
All footnotes are at the bottom of the help text.

3.6 Notifications

Notifications are event reports meant to be brought to the immediate knowledge of the user.
Notifications have two possible destinations:

• Standard output/error stream: This is used while the TUI is not launched.

• TUI notification bar: This is used while the TUI is launched.

Notifications sent to the TUI’s notification bar automatically disappear after 5 seconds.

3.7 Logging

Logs are more detailed event reports meant for troubleshooting and debugging purporses.

Logs are written to a file on a local filesystem. The default log file is ~/.term_image/term_image.log but a different file can be specified:

• for all sessions, using the log file config option

• per session, using the --log command-line option

A log entry has the following format:

(<pid>) (<date> <time>) <process>: <thread>: [<level>] <module>: <function>: <message>

• pid: The process ID of the term-image session.

• date and time: Current system date and time in the format %d-%m-%Y %H:%M:%S.

• process and thread: The names of the python process and thread that produced the log record.

– Only present when the logging level is set to DEBUG (either by --debug or --log-level=DEBUG).

• level: The level of the log entry, this indicates it’s importance.

• module: The package sub-module from which it originated.

• function: The function from which it originated.

– Only present when running on Python 3.8+ and logging level is set to DEBUG (either by --debug or
--log-level=DEBUG).

36 Chapter 3. Image viewer

term-image

• message: The actual report describing the event that occured.

Note:

• Certain logs and some extra info are only provided when logging level is set to DEBUG.

• Log files are appended to, so it’s safe use the same file for multiple sessions.

• Log files are rotated upon reaching a size of 1MiB.

– Only the current and immediate previous log file are kept.

• The Process ID of the term-image instance preceeds every log entry, so this can be used to distinguish and track
logs from different sessions running simultaneously while using the same log file.

3.8 Exit Codes

term-image returns the following exit codes with the specified meanings:

• 0 (SUCESS): Exited normally and successfully.

• 1 (FAILURE): Exited due to an unhandled exception or a non-specific error.

• 3 (INTERRUPTED): The program recieved an interrupt signal i.e SIGINT.

• 4 (CONFIG_ERROR): Exited due to an irremediable error while loading the user config.

• 5 (NO_VALID_SOURCE): Exited due to lack of any valid source.

• 6 (INVALID_ARG): Exited due to an invalid command-line argument value.

3.9 Known Issues

1. The TUI is not supported on Windows

2. Drawing of images and animations doesn’t work completely well with cmd and powershell (tested in Windows
Terminal). See Known Issues for details.

• In the viewer’s CLI mode, use the --h-allow option to specify a horizontal allowance.

3.10 Planned Features

• Performance improvements

• STDIN source

• Open in external viewer

• Pattern-based file and directory exclusion

• Minimum and maximum file size

• Optionally skipping symlinks

• Distinguished color for symlinked entries in the list view

• Full grid view

3.8. Exit Codes 37

term-image

• Grid cells for directory entries

• Interactive CLI mode

• Slideshow

• Zoom/Pan

• Sorting options

• Find in iist view

• Filter in list and grid views

• Alpha backaground adjustment per image

• Frame duration adjustment per animated image

• Copy:

– Image data

– File/Directory name

– Full path

– Parent directory path

• Theme customization

• Config menu

• Overlay support for Image widgets

• etc. . .

38 Chapter 3. Image viewer

CHAPTER

FOUR

FAQS

Why?

• Why not?

• To improve and extend the capabilities of CLI and TUI applications.

• Terminals emulators have been an always will be!

What about Windows support?

• Firstly, only the new Windows Terminal seems to have proper ANSI support and mordern terminal emulator
features.

• The library and the viewer’s CLI mode currently work (with a few quirks) on Windows (i.e using cmd or
powershell) if the other requirements are satisfied but can’t guarantee it’ll always be so.

– Drawing images and animations doesn’t work completely well in cmd and powershell. See Known
Issues.

• The TUI doesn’t work due to the lack of fcntl on Windows, which is used by urwid.

• If stuck on Windows and want to use all features, you could use WSL + Windows Terminal.

Why are colours not properly reproduced?

• Some terminals support 24-bit colors but have a 256-color pallete. This limits color reproduction.

Why do images look out-of-scale in my terminal?

• For the library, adjust the font ratio using get_font_ratio().

• For the CLI or TUI, adjust your font ratio setting.

Why is the TUI unresponsive or slow in drawing images?

• Drawing (not rendering) speed is enteirly dependent on the terminal emulator itself.

• Some terminal emulators block upon input, so rapidly repeated input could cause the terminal to be unre-
sponsive.

39

https://github.com/microsoft/terminal
https://docs.python.org/3/library/fcntl.html
https://urwid.org

term-image

40 Chapter 4. FAQs

CHAPTER

FIVE

GLOSSARY

Below are definitions of terms used across the library’s public interface, exception messages, CLI help text and the
documentation.

Note: For contributors, these terms are also used in the source code, as variable names, in comments, docstrings, etc.

alignment The position to place a rendered image within its padding.

allowance The amount of space to be left un-used in a given maximum size.

alpha threshold Alpha ratio/value above which a pixel is taken as opaque.

animated Having multiple frames.

The frames of an animated image are generally meant to be displayed in rapid succession, to give the effect of
animation.

available height The remainder after vertical allowance is subtracted from the maximum amount of lines.

available size The remainder after allowances are subtracted from the maximum size.

available width The remainder after horizontal allowance is subtracted from the maximum amount of columns.

font ratio The aspect ratio (i.e the ratio of width to height) of a character cell in the terminal emulator.

See also: get_font_ratio() and set_font_ratio().

horizontal alignment The position to place a rendered image within its padding width.

horizontal allowance The amount of columns to be left un-used in a given maximum amount of columns.

padding

padding width Amount of columns within which to fit an image. Excess columns on either or both sides of the image
(depending on the horizontal alignment) will be filled with spaces.

padding height Amount of columns within which to fit an image. Excess columns on either or both sides of the image
(depending on the vertical alignment) will be filled with spaces.

pixel ratio It is equvalent to the font ratio multiplied by 2, since there are two pixels (arranged vertically) in one
character cell.

render

rendered To convert image pixel data into a string (optionally including escape sequences to produce colour and
transparency).

rendered height The amount of lines that’ll be occupied by a rendered image when drawn onto a terminal screen.

41

term-image

rendered size The amount of space (columns and lines) that’ll be occupied by a rendered image when drawn onto a
terminal screen.

This is determined by the size and scale of an image.

rendered width The amount of columns that’ll be occupied by a rendered image when drawn onto a terminal
screen.

scale The fraction of an image’s size that’ll actually be used to render it.

See also: Image scale.

source The resource from which an image is derived.

terminal height The amount of lines on a terminal screen at a time i.e without scrolling.

terminal size The amount of columns and lines on a terminal screen at a time i.e without scrolling.

terminal width The amount of columns on a terminal screen at a time.

vertical alignment The position to place a rendered image within its padding height.

vertical allowance The amount of lines to be left un-used in a given maximum amount of lines.

42 Chapter 5. Glossary

CHAPTER

SIX

INDICES AND TABLES

• Glossary

• genindex

• modindex

• search

43

term-image

44 Chapter 6. Indices and tables

PYTHON MODULE INDEX

t
term_image.exceptions, 20
term_image.image, 13

45

term-image

46 Python Module Index

INDEX

A
alignment, 41
allowance, 41
alpha threshold, 41
animated, 41
available height, 41
available size, 41
available width, 41

C
close() (term_image.image.ImageIterator method), 20
close() (term_image.image.TermImage method), 15
closed (term_image.image.TermImage property), 14

D
draw() (term_image.image.TermImage method), 15

F
font ratio, 41
frame_duration (term_image.image.TermImage prop-

erty), 14
from_file() (term_image.image.TermImage class

method), 17
from_url() (term_image.image.TermImage class

method), 17

G
get_font_ratio() (in module term_image), 21

H
height (term_image.image.TermImage property), 14
horizontal alignment, 41
horizontal allowance, 41

I
ImageIterator (class in term_image.image), 19
InvalidSize, 21
is_animated (term_image.image.TermImage property),

14

M
module

term_image.exceptions, 20
term_image.image, 13

N
n_frames (term_image.image.TermImage property), 14

O
original_size (term_image.image.TermImage prop-

erty), 14

P
padding, 41
padding height, 41
padding width, 41
pixel ratio, 41

R
render, 41
rendered, 41
rendered height, 41
rendered size, 42
rendered width, 42
rendered_height (term_image.image.TermImage prop-

erty), 14
rendered_size (term_image.image.TermImage prop-

erty), 14
rendered_width (term_image.image.TermImage prop-

erty), 14

S
scale, 42
scale (term_image.image.TermImage property), 14
scale_x (term_image.image.TermImage property), 14
scale_y (term_image.image.TermImage property), 15
seek() (term_image.image.TermImage method), 18
set_font_ratio() (in module term_image), 21
set_size() (term_image.image.TermImage method), 18
size (term_image.image.TermImage property), 15
source, 42
source (term_image.image.TermImage property), 15

47

term-image

T
tell() (term_image.image.TermImage method), 19
term_image.exceptions

module, 20
term_image.image

module, 13
TermImage (class in term_image.image), 13
TermImageException, 21
terminal height, 42
terminal size, 42
terminal width, 42

U
URLNotFoundError, 21

V
vertical alignment, 42
vertical allowance, 42

W
width (term_image.image.TermImage property), 15

48 Index

	Installation
	Requirements
	Steps
	Supported Terminal Emulators

	Library Documentation
	Tutorial
	Creating an instance
	Rendering an image
	1. Unformatted
	2. Formatted

	Drawing/Displaying an image to/in the terminal
	Image size
	Image scale

	Reference
	Core Library Definitions
	Context Management Protocol Support
	Iteration Support

	Custom Exceptions
	Top-Level Functions
	Image Format Specification

	Known Issues
	Planned Features

	Image viewer
	Text-based User Interface
	Demo
	UI Components
	Contexts
	Actions

	Configuration
	Config Options
	Key Config

	Image sources
	Modes
	Usage
	Notifications
	Logging
	Exit Codes
	Known Issues
	Planned Features

	FAQs
	Glossary
	Indices and tables
	Python Module Index
	Index

